STATUS REPORT FOR PERIOD COVERING **APRIL THROUGH JUNE 2008** S & H SUNOCO

172 Armistice Blvd905 CRANSTON STREET Pawtucket CRANSTON, RHODE ISLAND (LS-0757)

Rhode Island 02860

401-723-9900

Submitted to:

FAX 401-723-9973

SAGE

Ms. Paula-Jean Therrien Rhode Island Department of **Environmental Management** Office of Waste Management 235 Promenade Street Providence, Rhode Island 02908

Prepared for:

S & H Realty, Inc. P.O. Box 41634 Providence, Rhode Island 02904

Prepared by:

SAGE Environmental, Inc. 172 Armistice Blvd Pawtucket, Rhode Island 92860

SAGE Project No. R016

D.E.M. / O.W.M.

SAGE ENVIRONMENTAL

FOR PERIOD COVERING
APRIL THROUGH JUNE 2008
S & H SUNOCO
905 CRANSTON STREET
CRANSTON, RHODE ISLAND
(LS-0757)

Submitted to:

Ms. Paula-Jean Therrien
Rhode Island Department of Environmental Management
Office of Waste Management
235 Promenade Street
Providence, RI 02908

Prepared for:

S & H Realty, Inc. P.O. Box 41634 Providence, Rhode Island 02904

Prepared by:

SAGE Environmental, Inc. 172 Armistice Blvd Pawtucket, RI 02860

SAGE Project No. R016

172 Armistice Blvd.
Pawtucket, Rhode Island 02860
401-723-9900
FAX 401-723-9973
www.sageenviromental.net

Principal

RECEIVED D.E.M. / O.W.M.

August 15, 2008

SAGE ENVIRONMENTAL

Ms. Paula-Jean Therrien Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, Rhode Island 02908

RE: Status Report

S&H Sunoco (LS-0757) 905 Cranston Street Cranston, Rhode Island SAGE Project No. R016

Dear Ms. Therrien:

Enclosed please find a Status Report documenting activities related to the soil vapor extraction (SVE) remediation system operating at the referenced Site. This report documents monitoring, operation, and maintenance activities for the approximate period from April 1, 2008 through June 30, 2008.

Should you have any questions regarding the contents of the report, please contact this office.

Sincerely,

SAGE Environmental, Inc.

Brian F. Koch

Senior Geologist

BFK/BWC:car

Enclosure

c: Mr. Frank Hindle, S&H Realty, Inc.

R016R

TABLE OF CONTENTS

1.0	INTRODUCT	ION1
2.0 2.1 2.2 2.3 2.4 2.5	Groundwater Separate Phas Water Table I Groundwater	TER MONITORING
3.0	SOIL VAPOR	EXTRACTION SYSTEM MONITORING6
4.0	FINDINGS A	ND CONCLUSIONS7
5.0	RECOMMEN	DATIONS9
Figu	res	
	Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Site Plan Daily Average Levelogger Readings and Rainfall Levelogger Readings and SVE Influent PID Readings
Appe	endices	
	Appendix A Appendix B	Monitor Well Gauging Summary Logs Groundwater Sampling Laboratory Analytical Data and Chain-of-Custody Documentation
Attac	chments	
	Attachment 1 Attachment 2 Attachment 3	Equivalent Head Elevations Over Time Separate Phase Petroleum Thickness Over Time Groundwater Analytical Results Over Time

1.0 INTRODUCTION

SAGE Environmental, Inc. (SAGE) presents this status report for environmental services provided at the former S&H Sunoco gasoline service station located at 905 Cranston Street in Cranston, Rhode Island (Site). A Site Location Map identifying the Site on the USGS Providence, Rhode Island Quadrangle Map is included as Figure 1. A Site Plan identifying pertinent Site features is included as Figure 2.

This report summarizes corrective actions associated with the referenced location for the approximate period April 1, 2008 through June 30, 2008. Specific activities for this period included:

- groundwater gauging
- groundwater sampling and analysis
- operations and maintenance site visits

2.0 GROUNDWATER MONITORING

Groundwater gauging and monitoring activities conducted during this reporting period are summarized below.

2.1 Groundwater Gauging

As recommended in SAGE's January 26, 2007 Status Report, and approved by RIDEM in a letter dated February 21, 2007, the gauging frequency of select Site monitor wells was reduced from monthly to quarterly.

Groundwater elevation data were obtained during this reporting period on May 7, 2008 using an ORS electronic oil/water interface probe. Equivalent head elevations calculated from data generated during the gauging event are summarized in **Table 1**. A summary of monitor well gauging data for the gauging event is included as **Appendix A**. A summary of equivalent head data from February 11, 1999 through May 7, 2008 is included as **Attachment 1**.

Monitor well gauging performed during the reporting period indicates that the average depth to groundwater beneath the Site on May 7, 2008 was determined to be approximately 31.5 feet below grade.

Table 1
Equivalent Head Elevations
May 7, 2008

Monitor Well	MP Elevations	Equivalent Head Elevation
ECS-1	WELL	CLOSED
ECS-2	97.69	69.99
ECS-3	WELL	CLOSED
GZ-1	99.19	66.98
GZ-2	WELL	CLOSED
GZ-3	99.34	67.06
MW-1	WELL	CLOSED
MW-2	WELL	CLOSED
MW-3	WELL	CLOSED
MW-4	98.99	67.02
MW-5	WELL	CLOSED
MW-6	97.25	66.96
MW-7	WELL	CLOSED
MW-8	WELL	CLOSED
MW-9	98.60	67.04
MW-10	WELL	CLOSED
MW-11	WELL	CLOSED
MW-12	WELL CLOSED	
VW-1	99.10	NG
VW-2	98.67	NG
VW-3	98.56	NG

NG = Not Gauged MP = Measuring Point

2.2 Separate Phase Petroleum Evaluation

No separate phase petroleum (SPP) was identified during this reporting period in Site monitor wells. A summary of SPP identified during previous monitor well gauging events conducted between February 11, 1999 and May 7, 2008 is included as **Attachment 2**. Measurable SPP (SPP thickness equal to or greater than 0.01 feet) was last detected in a Site monitor well during gauging activities performed on May 21, 2002.

2.3 Water Table Elevation Assessment

A hydrogeological investigation is being conducted at the Site in conjunction with the weekly routine monitoring of the soil vapor extraction (SVE) remediation system.

On June 14, 2006, a levelogger was deployed in monitor well MW-4, and a barologger and rain gage were installed at the Site. A levelogger is a pressure-sensitive electronic instrument which, when deployed (submerged and suspended) in a groundwater monitor well, continually measures and records the height of the water column above the instrument. The water column height data are combined with barometric pressure data (recorded by the barologger) and well elevation survey data to yield the local water table elevation. This continuous record of water table elevation provided by the levelogger at the Site is being used in conjunction with the rainfall data to investigate the local water table excursion dynamics, response to storm runoff, and historic level occurrence.

Under normal conditions groundwater levels exhibit cyclical seasonal fluctuations and generally correlate with precipitation. Water level highs usually follow increased precipitation as can be seen in **Figure 3**, which displays daily average levelogger readings and rainfall during the reporting period. Water level increases were seen after rainfall events on March 15 and March 19, 2008.

Due to the historical presence of separate-phase petroleum (SPP) at the Site, the existence of a vertical "smear zone" is expected, as SPP floating on the water table surface was carried up and down by water table excursions and subsequently was deposited on exposed soils. As such, groundwater contaminant concentrations and SVE influent readings would be expected to exhibit a dependence on the elevation of the water table within the smear zone, with generally higher concentrations and readings during periods of low table and exposed soils within the smear zone. Comparison of the levleogger record from MW-4 to SVE influent concentrations since June of 2006 indicates that the highest influent SVE concentrations generally occurred shortly after a decline in the water table.

During this reporting period, levelogger data recorded in MW-4 (**Figure 4**) indicates that the water level has steadily fallen approximately one foot. In late March 2008, the SVE system influent concentrations increased from 8 ppm to 410 ppm, indicating that the SVE system is still effectively removing VOCs from subsurface soils.

Continued levelogger deployment is recommended to ensure that SVE system decommissioning is not considered until a lower water table condition is encountered and potential rebound is investigated.

2.4 Groundwater Sampling and Analysis

Groundwater samples were obtained on May 7, 2008 from select Site monitor wells (MW-4, MW-6, MW-9, ECS-2, GZ-1, and GZ-3). Prior to sampling, monitor wells were purged of a minimum of three well volumes of water. Samples were collected using dedicated, disposable bailers and were placed in analyte-specific containers. Following sample collection, the samples were placed in a cooler with ice and were transported to a Rhode Island-certified laboratory under Chain-of-Custody documentation for analysis of benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl tert-butyl ether (MTBE) via EPA Method 8021B. Analytical results for groundwater samples collected on May 7, 2008 are summarized in **Table 2**. Analytical results for groundwater samples collected from Site monitor wells between May 17, 1999 and May 7, 2008 are summarized in **Attachment 3**. Certificates of Analyses and Chain-of-Custody documentation for the May 7, 2008 groundwater-sampling event are included in **Appendix B**.

Table 2
Groundwater Analytical Results
May 7, 2008

Sample / Date		Concentration					RIDEM	RIDEM GB
	MW-4	MW-6	MW-6 MW-9 5/7/2008 5/7/2008	ECS-2 5/7/2008	GZ-1 5/7/2008	GZ-3 5/7/2008	Method 1 Objective	Groundwater UCL
Analyte	5/7/2008 5/7/	5/7/2008					GB Groundwater	
Volatiles, Purgeable Aroma	atics by 8021B	(ug/L):		SERVICE OF		Mark State	THE REPORT OF THE PARTY OF THE	
Benzene	42	<1	38	<20	300 ^b	100	140	18000
Ethylbenzene	590	<1	160	230	1500	1100	1600	16000
Methyl tert-butyl ether (MTBE)	63	<1	12	<20	<80	<50	5000	NE
Toluene	200	<1	11	590	7400 ^b	2400 ^b	1700	21000
Xylenes (total)	2500	<1	120	1700	9600	10000	NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

NE: No allowable limit is established for the substance

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x)

Sample Results:

b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives

According to the Rhode Island Department of Environmental Management (RIDEM) Groundwater Classification Map, the Site lies within an area designated as GB. A GB Groundwater Classification is defined as those groundwater resources that have been designated as not suitable for public or private drinking water use without prior treatment.

Groundwater samples collected on May 7, 2008 identified exceedances of RIDEM Method 1 GB Groundwater Objectives for petroleum related compounds (i.e., BTEX

and/or MTBE) in samples collected from monitor wells GZ-1 and GZ-3. Laboratory analysis of the groundwater samples collected from the remaining monitor wells sampled during this reporting period (MW-4, MW-6, MW-9, and ECS-2) indicates that these wells were compliant with RIDEM Method 1 GB Groundwater Objectives for BTEX and MTBE at the time sampled.

2.5 Evaluation of Current Site Conditions

A summary of SPP measurements obtained during monitor well gauging events conducted between February 11, 1999 and May 7, 2008 is included as **Attachment 2**. During each gauging event, depth to product (where present) and depth to water were gauged in Site monitor wells using an electronic oil/water interface probe. Locations of Site monitor wells are depicted on **Figure 2**. Gauging data indicates that SPP with a measured thickness of greater than 0.01 feet has not been observed in a Site monitor well since May 21, 2002. On May 21, 2002, SPP with a measured thickness of 0.01 feet was observed in monitor well GZ-3.

Gauging data indicates that sporadic occurrences of SPP with a thickness of equal to or greater than 0.01 feet were observed in monitor wells MW-1, MW-2 MW-3, MW-4, ECS-1, ECS-2, GZ-1, GZ-2 and GZ-3 between February 11, 1999 and May 21, 2002. No occurrences of SPP with measured thicknesses of equal to or greater than 0.01 feet have been observed in the remaining Site monitor wells (MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11 or MW-12). Based on gauging data collected, SPP occurrences were limited to on-Site monitor wells. A summary of maximum SPP thicknesses recorded in monitor wells MW-1, MW-2, MW-3, MW-4, ECS-1, ECS-2, GZ-1, GZ-2 and GZ-3 between February 11, 1999 and May 21, 2002 is included in **Table 3**.

Table 3
Summary of Maximum SPP Occurrences

Monitor Well	Maximum SPP Thickness Detected	Date of Maximum SPP Occurrence
MW-1	3.45 feet	10/27/99
MW-2	0.01 feet	8/12/99
MW-3	0.02 feet	8/12 and 9/24/99
MW-4	1.36 feet	2/13/02
ECS-1	0.43 feet	2/13/02
ECS-2	0.68 feet	5/17/99
GZ-1	0.10 feet	2/17/00
GZ-2	0.60 feet*	12/26/00
GZ-3	0.30 feet	11/15/00

^{*} Thickness estimated from product removed in first bailer lowered into monitor well.

Based on monthly monitor well gauging activities performed since May 21, 2002, and quarterly monitor well gauging activities performed since January 2007, it appears that occurrences of SPP at the Site have been eliminated through a combination of manual product recovery efforts and removal via the SVE system operating at the Site.

Data for quarterly sampling performed of Site monitor wells on May 7, 2008 indicate that exceedances of RIDEM Method 1 GB Groundwater Objectives have been similar to recent quarterly sampling events. A summary of quarterly groundwater monitoring results for samples collected between May 17, 1999 and May 7, 2008 is included as **Attachment 3**. In general, recent analytical results for benzene and MTBE have exhibited a continuous decline in concentrations and similar patterns have also been observed for ethylbenzene, toluene and total xylenes. Based on results for the previous year of quarterly groundwater sampling (May 2007 through May 2008), exceedances of RIDEM Method 1 GB Groundwater Objectives were limited to monitor wells ECS-2, GZ-1, and GZ-3.

3.0 SOIL VAPOR EXTRACTION SYSTEM MONITORING

The SVE system has operated continuously since the previous reporting period using a two blower carbon drum system. During the operational period of SVE Blower #1 and SVE Blower #2 were connected to vent lateral-2, located within the tank field. The effluent vapors from each blower were treated with vapor phase carbon prior to release. Readings obtained during monitoring of the two blower SVE system, including photoionization detector (PID) screening results of the influent and effluent, are summarized in **Table 4**.

Table 4
Vapor Phase Carbon System Inspection Summary
April through June 2008

Vapor Phase Carbon System						
	PID Screening Results (ppm)					
Date	Inspected By		VL-2 Blower (Pump 1)		Blower np 2)	
		Influent	Effluent	Influent	Effluent	
4/4/2008	ZB	49.1	5.8	93.2	8.6	
4/11/2008	FM	13	2	33	10	
4/18/2008	FM	7	ND	27	ND	
4/25/2008	TS	11.5	ND	24.4	ND	
5/2/2008	BF	211	0.2	109	ND	
5/9/2008	BF	22.7	0.4	0.4	ND	
5/16/2008	FM	9	ND	14	ND	
5/23/2008	BF	20.1	ND	ND	ND	
5/30/2008	BF/SL	1.3	ND	57.3	3.7	
6/6/2008	BF	41.2	7.8	91.4	ND	
6/13/2008	FM	15	2	21	1	
6/20/2008	FM	8	ND	20	ND	
6/27/2008	BF	410	293	671	12.6	

PID - Photoionization detector

ND - not detected

ppm - parts per million

PID screening of SVE Blower #1 revealed detections of total photoionizable compounds ranging from 1.3 ppm to 410 ppm. PID screening of SVE Blower #2 observed concentrations of total photoionizable compounds ranging from ND ppm to 671 ppm. Spent carbon drums were changed out on both Systems #1 and #2 on April 17 and June 20, 2008.

4.0 FINDINGS AND CONCLUSIONS

A summary of findings for activities conducted during the approximate period of April 1, 2008 through June 30, 2008 is presented below.

Monitor well gauging performed during the reporting period indicated that the average depth to groundwater beneath the Site during the reporting period was determined to be approximately 31.5 feet below grade.

No SPP was observed in Site monitor wells during this reporting period. As such, no measurable SPP was recovered via manual bailing of Site monitor wells. It should be noted that measurable SPP (SPP thickness equal to or greater than 0.01 feet) was last detected in a Site monitor well on May 21, 2002. Based on monthly monitor well gauging activities performed since May 21, 2002, and quarterly monitor well gauging since January 2007, it appears that occurrences of SPP at the Site have been eliminated through a combination of manual product recovery efforts and removal via the SVE system operating at the Site.

Groundwater samples collected on May 7, 2008 identified exceedances of RIDEM Method 1 GB Groundwater Objectives for the petroleum related compound toluene in the groundwater samples collected from monitor wells GZ-1 and GZ-3 and benzene in the groundwater sample collected from monitor well GZ-1. Laboratory analysis of the groundwater samples collected from monitor wells MW-4, MW-6, MW-9, and ECS-2 indicates that these wells were compliant with RIDEM Method 1 GB Groundwater Objectives for BTEX and MTBE at the time sampled.

Based on a comparison of analytical data for groundwater samples collected during the reporting period and historical analytical results since May 17, 1999, a significant downward trend continues to be observed in concentrations of BTEX and MTBE in groundwater beneath the Site. Analytical results for quarterly groundwater monitoring conducted between May 2007 and May 2008 indicate that exceedances of RIDEM Method 1 GB Groundwater Objectives are currently limited to monitor wells ECS-2, GZ-1, and GZ-3.

The SVE system has operated almost continuously since the previous reporting period using a two blower carbon drum system. SVE Blower #2, however, was off upon arrival during 7 site visits. During the operational period of SVE Blower #1 and SVE Blower #2 were connected to vent lateral-2, located within the tank field. Weekly PID screening of SVE Blower #1 revealed detections of total photoionizable compounds ranging from 1.3 ppm to 410 ppm. PID screening of SVE Blower #2 observed concentrations of total photoionizable compounds ranging from ND ppm to 671 ppm.

Results of monitoring activities conducted at the Site during this reporting period indicate that exceedances of RIDEM Method 1 GB Groundwater Objectives persist in groundwater beneath the Site. However, in general, an overall downward trend in concentrations of total BTEX and MTBE has been observed in groundwater based on historical analytical results for groundwater samples collected since May 1999.

5.0 RECOMMENDATIONS

Based on the results of data generated during the reporting period and an evaluation of current Site conditions, SAGE recommends the following:

- Continued quarterly groundwater monitoring of monitor wells MW-4, MW-9, ECS-2, GZ-1 and GZ-3;
- · Conduct annual groundwater monitoring for monitor well MW-6.

Figure 3

Daily Average Levelogger Readings and Rainfall
S&H Sunoco Cranston, RI

<u>Figure 4</u>: Baro-Compensated Water Level & SVE Influent Readings Former S & H Sunoco, Cranston, RI March 12, 2008 to July 27, 2008

S & H SUNOCO CRANSTON STREET, CRANSTON, RHODE ISLAND

Instrument	ORS Interface	Probe			Sage Job #	R016
Checked By			Date:	5/7/2008		
Gauged By	ZB		M.P. Elevation	ons : 5/8/06		
Well#	MP Elev (pvc)	Depth to Product	Depth to Water	Product Thickness	Product Bailed	Equivalent HD Elev.
ECS-1			WELL	CLOSED		
ECS-2	97.69	_	30.70	0.00		66.99
ECS-3			WELL	CLOSED		
GZ-1	99.19	NG	32.21	0.00		66.98
GZ-2		WELL CLOSED				•
GZ-3	99.34	_	32.28	0.00	T -	67.06
MW-1	WELL CLOSED					•
MW-2		WELL CLOSED				
MW-3			WELL	CLOSED		
MW-4	98.99	_	31.97	0.00	T -	67.02
MW-5			WELL	CLOSED		•
MW-6	97.25	_	30.29	0.00	_	66.96
MW-7			WELL	CLOSED		•
MW-8			WELL	CLOSED		
MW-9	98.60	_	31.56	0.00	_	67.04
MW-10			WELL	CLOSED		
MW-11	WELL CLOSED					
MW-12			WELL	CLOSED		
VW-1	99.10	NG	NG	NG	NG	NG
VW-2	98.67	NG	NG	NG	NG	NG
VW-3	98.56	NG	NG	NG	NG	NG

COMMENTS:

MW-10, 11 and 12 are 1.25" monitor wells, remaining monitor wells are 2"

— = No separate-phase petroleum identified

N.G. = Not gauged

Specific gravity of petroleum assumed = 0.75

MW-1, MW-2, MW-3, MW-5, MW-7, MW-8, MW-10, MW-11, MW-12, ECS-1, ECS-3 and GZ-2 closed on 10/25/06

51 Louisa Viens Drive Dayville, CT 06241 FAX: 860-774-2689 860-774-6814 800-932-1150

ANALYTICAL DATA REPORT

Report Number: E805528 Project: R016

prepared for:

Sage Environmental, Inc. 172 Armistice Blvd. Pawtucket, RI 02860

Attn: Brian Koch

Received Date: 5/8/2008 Report Date: 5/13/2008

R. Wank

Premier Laboratory, Inc Authorized Signature

Certifications: CT (PH-0465), MA (M-CT008), ME (CT050), NH (2020), NJ (CT002), NY (11549), RI (RI246), VT (VT11549) 81 Louisa Viens Drive Dayville, CT 06241 FAX: 860-774-2689 860-774-6814 800-932-1150

Report No: E805528

Client: Sage Environmental, Inc

Project: R016

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Premier Laboratory, Inc received six samples from Sage Environmental, Inc on 05/08/2008. The samples were analyzed from the following list of analyses:

Volatiles, Purgeable Aromatics by 8021B in GW/SW 8021

Variances:

SDG:

None reported.

Method:

None reported.

QA/QC:

Sample 5, GZ-1, Volatiles, Purgeable Aromatics by 8021B: One surrogate spike was outside quality control limits for the sample, due to matrix interference. The sample was re-extracted and re-analyzed and the surrogate was still outside control limits.

Sample 6, GZ-3, Volatiles, Purgeable Aromatics by 8021B: One surrogate spike was outside quality control limits for the sample, due to matrix interference. The sample was re-extracted and re-analyzed and the surrogate was still outside control limits.

Laboratory: Premier Laboratory, Inc

PL Report No: E805528

PL Sample No: 1

Date Collected: 5/7/2008

Date Received: 5/8/2008

Date Extracted: By:

Date Analyzed: 05/09/08 By: DDD Method: 8021 QC Batch#: 61024

Units: ug/L

Customer: Sage Environmental, Inc.

Location: Cranston, RI

Project: R016

Sample Description: MW-4

Matrix: Aqueous
Percent Moisture: N/A
Sample Weight/Volume:
Dilution Factor: 16
Soil Extract Volume:
Lab Data File: 2050908.D

CAS No.	Parameter	Result	DL
71-43-2	Benzene	42	16
100-41-4	Ethylbenzene	590	16
1634-04-4	Methyl tert-butyl ether (MTBE)	63	16
108-88-3	Toluene	200	16
1330-20-7	Xylenes (total)	2500	16
Surrogate	Recovery	Limits	

Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	129%	74%-131%	· · · · · ·
Fluorobenzene #2	67%	63%-122%	
Trifluorotoluene #2	92%	72%-126%	

Laboratory: Premier Laboratory, Inc

Date Analyzed: 05/09/08 By: DDD

PL Report No: E805528

PL Sample No: 2

Date Collected: 5/7/2008
Date Received: 5/8/2008
Date Extracted: By:

Method: 8021 QC Batch#: 61024

Units: ug/L

Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: MW-6

Matrix: Aqueous
Percent Moisture: N/A
Sample Weight/Volume:
Dilution Factor: 1
Soil Extract Volume:

Lab Data File: 2050906.D

CAS No.	Parameter	Result	DL
71-43-2	Benzene	ND	1.0
100-41-4	Ethylbenzene	ND	1.0
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	1.0
108-88-3	Toluene	ND	1.0
1330-20-7	Xylenes (total)	ND	1.0
Surrogate	Recovery	Limits	
4 December to the second #2	1100/	740/ 1210/	

Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	119%	74%-131%	
Fluorobenzene #2	64%	63%-122%	
Trifluorotoluene #2	84%	72%-126%	

Laboratory: Premier Laboratory, Inc

PL Report No: E805528

PL Sample No: 3

Date Collected: 5/7/2008 Date Received: 5/8/2008 Date Extracted:

Date Extracted: By:
Date Analyzed: 05/09/08 By: DDD

Method: 8021 QC Batch#: 61024

Units: ug/L

Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: MW-9

Matrix: Aqueous Percent Moisture: N/A Sample Weight/Volume: Dilution Factor: 1 Soil Extract Volume:

Lab Data File: 2050907.D

CAS No.	Parameter	Result	DL
71-43-2	Benzene	38	1.0
100-41-4	Ethylbenzene	1 60	1.0
1634-04-4	Methyl tert-butyl ether (MTBE)	12	1.0
108-88-3	Toluene	11	1.0
1330-20-7	Xylenes (total)	120	1.0
Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	121%	74%-131%	

Surrogate | Recovery | Limits |

4-Bromochlorobenzene #2 | 121% | 74%-131% |

Fluorobenzene #2 | 81% | 63%-122% |

Trifluorotoluene #2 | 105% | 72%-126% |

Laboratory: Premier Laboratory, Inc

PL Report No: E805528

PL Sample No: 4

Date Collected: 5/7/2008 Date Received: 5/8/2008

Date Extracted: By:

Date Analyzed: 05/09/08 By: DDD

Method: 8021 QC Batch#: 61024 Units: ug/L Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: ECS-2

Matrix: Aqueous Percent Moisture: N/A Sample Weight/Volume: Dilution Factor: 20 Soil Extract Volume: Lab Data File: 2050909.D

CAS No.	Parameter	Result	DL
71-43-2	Benzene	ND	20
100-41-4	Ethylbenzene	230	20
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	20
108-88-3	Toluene	590	20
1330-20-7	Xylenes (total)	1700	20
Surrogate	Recovery	Limits	

Surrogate	Recovery	Limits
4-Bromochlorobenzene #2	131%	74%-131%
Fluorobenzene #2	65%	63%-122%
Trifluorotoluene #2	89%	72%-126%

Laboratory: Premier Laboratory, Inc

PL Report No: E805528

PL Sample No: 5

Date Collected: 5/7/2008 Date Received: 5/8/2008 Date Extracted:

By: Date Analyzed: 05/09/08 By: DDD

Method: 8021 QC Batch#: 61024 Units: ug/L

Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: GZ-1

Matrix: Aqueous Percent Moisture: N/A Sample Weight/Volume: Dilution Factor: 80 Soil Extract Volume: Lab Data File: 2050912.D

CAS No.	Parameter	<u>Result</u>	DL
71-43-2	Benzene	300	80
100-41-4	Ethylbenzene	1500	80
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	80
108-88-3	Toluene	7400	80
1330-20-7	Xylenes (total)	9600	80
Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	115%	74%-131%	

1330-20-7	Aylenes (total)	9600	80
Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	115%	74%-131%	•
Fluorobenzene #2	57%	63%-122%	
Trifluorotoluene #2	77%	72%-126%	

Laboratory: Premier Laboratory, Inc.

PL Report No: E805528

PL Sample No: 6

Date Collected: 5/7/2008

Date Received: 5/8/2008

Date Extracted: By:

Date Analyzed: 05/09/08 By: DDD

Method: 8021 QC Batch#: 61024 Units: ug/L Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: GZ-3

Matrix: Aqueous
Percent Moisture: N/A
Sample Weight/Volume:
Dilution Factor: 50
Soil Extract Volume:

Lab Data File: 2050913.D

CAS No.	Parameter	Result	DL
71-43-2	Benzene	100	50
100-41-4	Ethylbenzene	1100	50
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	50
108-88-3	Toluene	2400	50
1330-20-7	Xylenes (total)	10000	50
Surrogate	Recovery	Limits	

Surrogate	Recovery	Limits
4-Bromochlorobenzene #2	120%	74%-131%
Fluorobenzene #2	56%	63%-122%
Trifluorotoluene #2	80%	72%-126%

rie

rremier Laboratory, LC

SHADEU AHEAS FOR LAB ab WO# E655548

www.PremierLaboratory.com **CHAIN OF CUSTODY USE ONLY** Project Manager _ **COPY OF REPORT TO BILLING INFORMATION** PROJECT INFORMATION ROIL PROJECT: CUSTOMER: ____ BILL TO: PROJECT LOCATION: Chainsten STATE: Pl ADDRESS: ____ ADDRESS: SAGE Environmental, Inc. SAGE Environmental, Inc. PROJECT MANAGER: BY TUM LUCK
IN CASE WE HAVE ANY QUESTIONS WHEN BANAPLES ARRIVE WE SHOULD CALL: 172 Armistice Blvd 172 Armistico Blvd. ATTENTION: Pawtucket, RI 02860 ATTENTION: Pawtucket, RI 02860 E-MAIL: Same EMAIL: SOGRO COGLEDNIVON MENTAL. net TELEPHONE: TELEPHONE: PURCHASE ORDER #: ____ROILG \$23 -9900 FAX: 723-9973 PHONE: FAX: ____ SAMPLE TYPE ANALYSIS DATE SAMPLE COLLECTED COLLECTED SAMPLE IDENTIFICATION MATRIX 151710R MW-4 MIN)-6 1015 1030 1105 1135 1120 **CUSTODY TRANSFER** DATE TIME TURNAROUND (INDICATE IN CALENDAR DAYS): _____ FAX _____ HARD COPY ____ E-MAIL 5-7.08 EXPEDITED SERVICE MAY BE SUBJECT TO SURCHARGE SAMPLER: 1230 RECEIVED: RELINQUISHED: 5-8-08 09:30 RECEIVED: CONDITIONS UPON RECEIPT: (Check One) RELINQUISHED: °C Upon Receipt at Lab RECEIVED: Amblent

SEE REVERSE SIDE FOR TERMS AND CONDITIONS

,				
	·			1
	·			
			·	
		•		

Equivalent Head Elevations Over Time February through December 1999

Monitor Well	MP	2/11/99	3/5/99	4/9/99	5/17/99	6/9/99	7/7/99	8/12/99	9/24/99	10/27/99	11/8/99	11/17/99	12/20/99
	Elevations												
ECS-1	96.50	66.15	66.17	66.62	65.99	NG	NG	64.71	65.15	65.08	65.16	NG	64.84
ECS-2	97.88	66.16	65.94	66.54	65.86	65.78	65.31	64.67	65.11	65.05	65.09	NG	64.82
ECS-3	NG	DRY	NG	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
GZ-1	99.29	66.10	66.23	NG	65.92	65.83	65.36	64.73	65.13	NG	NG	65.07	64.79
GZ-2	97.39	66.08	66.25	66.55	65.93	65.84	65.35	64.72	65.13	NG	65.17	NG	64.84
GZ-3	99.43	66.06	66.22	66.53	65.92	65.79	65.34	64.72	65.11	NG	65.16	NG	64.84
MW-1	98.53	66.07	66.23	66.52	65.89	65.82	65.34	64.71	65.11	64.24	65.16	NG	64.81
MW-2	98.57	66.09	66.25	66.54	65.93	65.83	65.35	64.73	65.14	65.08	65.20	NG	64.84
MW-3	98.01	66.05	66.91	66.55	65.93	65.79	65.35	64.73	65.13	65.13	NG	NG	64.82
MW-4	98.99	66.08	61.23	66.53	65.91	65.81	65.33	64.70	65.10	65.03	NG	65.05	64.80
MW-5	95.28	NE	NE	NE	66.58	66.45	66.04	65.41	65.56	65.66	65.78	NG	65.49
MW-6	97.25	NE	NE	NE	65.88	65.78	65.29	64.66	65.06	65.36	65.11	NG	64.77
MW-7	96.89	NE	NE	NE	65.88	65.78	65.28	64.67	65.08	65.00	65.13	NG	64.78
MW-8	99.31	NE	NE	NE	65.89	65.8	65.32	64.69	65.10	65.03	65.15	NG	64.80
MW-9	98.60	NE	NE	NE	65.95	65.84	65.35	64.74	65.14	65.07	64.17	NG	64.84
VW-1	99.10	NE	NE	NE	NG	NG	65.08	NG	65.01	64.97	NG	65.08	DRY

NG = Not Gauged

NE = Non Existing (Monitor wells MW-5 through MW-9 and vent well VW-1 were installed on April 28 and 29, 1999.)

Equivalent Head Elevations Over Time January through December 2000

Monitor	MP Elevations	1/19/00	2/17/00	3/21/00	4/26/00	5/30/00	6/27/00	7/24/00	8/9/00	9/14/00	10/23/00	11/15/00	12/26/00
Well													
ECS-1	96.50	64.96	65.02	65.39	66.11	66.45	NG	65.83	65.58	NG	64.65	64.57	64.93
ECS-2	97.88	64.93	65.00	65.31	66.05	66.36	66.35	65.76	65.54	64.98	64.56	64.53	65.31
ECS-3	NG	DRY	DRY	DRY	NG	NG	DRY	NG	NG	DRY	DRY	DRY	DRY
GZ-1	99.29	64.98	64.99	65.35	66.05	66.36	66.35	65.76	65.54	65.76	64.63	64.54	64.92
GZ-2	97.39	62.92	65.00	65.37	66.05	66.37	66.36	65.77	65.55	65.07	64.65	64.57	NG
GZ-3	99.43	67.00	65.01	65.37	66.05	66.36	66.35	65.77	65.54	65.13	64.65	64.76	NG
MW-1	98.53	64.94	65.01	65.36	NG	NG	66.36	65.79	65.53	65.08	64.64	64.56	NG
MW-2	98.57	64.98	65.02	65.38	66.08	66.38	66.36	65.79	65.56	66.09	64.68	64.62	64.96
MW-3	98.01	64.98	65.01	65.37	66.06	66.37	66.36	65.78	65.56	65.57	64.66	64.58	64.94
MW-4	98.99	64.93	65.00	65.38	66.09	66.40	66.35	65.76	65.55	65.07	64.66	64.58	64.92
MW-5	95.28	65.58	65.64	66.04	66.70	67.03	67.03	66.46	66.19	65.76	65.30	65.12	65.47
MW-6	97.25	64.92	64.95	65.33	66.00	66.31	66.30	65.72	65.49	65.02	64.59	64.51	64.88
MW-7	96.89	64.92	64.96	65.34	66.03	66.32	66.30	65.72	65.50	65.02	64.62	64.53	64.91
MW-8	99.31	64.94	64.98	65.36	66.04	66.33	66.31	65.74	65.52	65.04	64.62	64.56	64.92
MW-9	98.60	64.98	67.02	NG	66.09	66.38	66.36	65.78	65.57	65.09	64.68	64.50	64.96
VW-1	99.10	NG	NG	NG	NG	NG	66.52	NG	NG	NG	NG	NG	NG

Equivalent Head Elevations Over Time January 2001 through December 2001

Monitor	MP	1/24/01	2/28/01	3/27/01	4/19/01	5/2/01	6/8//01	7/17/01	8/16/01	8/30/01	9/26/01	10/26/01	11/28/01	12/31/01
Well	Elevations													
ECS-1	96.50	64.90	65.19	66.01	67.16	67.09	66.83	66.70	NG	65.91	65.42	64.91	64.39	63.68
ECS-2	97.88	64.85	65.11	65.92	67.04	66.99	66.77	66.60	65.99	NG	65.36	64.85	64.35	64.09
ECS-3		DRY	DRY	DRY	DRY	DRY				De	stroyed			
GZ-1	99.29	64.89	65.11	65.94	67.03	66.97	66.76	66.59	65.99	NG	65.36	64.87	64.35	64.07
GZ-2	97.39	64.90	65.13	65.98	67.05	66.98	66.75	66.60	66.01	NG	65.37	64.88	64.37	63.90
GZ-3	99.43	64.90	65.13	65.96	67.02	66.97	66.76	NG	NG	65.82	65.37	NG	64.35	64.12
MW-1	98.53	NG	64.23	64.97	67.04	66.96	66.78	66.59	66.03	NG	65.38	64.90	64.21	64.03
MW-2	98.57	64.96	65.15	66.02	67.04	66.98	66.78	66.62	66.02	NG	65.40	64.90	64.37	64.12
MW-3	98.01	64.98	65.15	65.95	67.10	66.99	66.77	66.63	66.02	NG	65.39	64.89	64.35	64.12
MW-4	98.99	64.95	65.14	66.97	67.01	66.97	66.76	66.59	66.01	NG	65.38	64.88	64.38	64.40
MW-5	95.28	65.66	65.92	66.73	67.75	67.67	67.28	67.19	66.58	NG	65.97	65.48	64.97	64.63
MW-6	97.25	64.87	65.08	65.90	66.99	66.93	66.71	66.54	65.97	NG	65.33	64.82	64.31	64.04
MW-7	96.89	64.87	65.08	65.92	66.97	66.91	65.09	66.53	65.96	NG	65.32	64.83	64.32	64.06
MW-8	99.31	64.90	65.10	65.94	66.99	66.93	66.74	66.56	65.98	NG	65.34	64.85	64.33	64.08
MW-9	98.60	64.93	65.14	65.99	67.04	66.98	66.78	66.62	66.03	NG	65.39	64.90	64.39	64.12

Equivalent Head Elevations Over Time January 2002 through December 2002

Monitor	MP	1/30/02	2/13/02	3/14/02	4/5/02*	4/18/02	4/25/02*	5/21/02	6/21/02	7/23/02	8/9/02	9/20/02	10/17/02	11/14/02	12/13/02
Well	Elevations														
ECS-1	96.50	63.62	63.91	64.05	64.38	64.46	64.42	64.81	65.00	64.56	64.38	64.23	64.34	64.40	65.12
ECS-2	97.88	63.63	63.94	64.03		64.43		64.77	64.97	64.53	64.36	64.21	64.31	64.40	65.09
ECS-3								Dest	royed						
GZ-1	99.29	63.96	63.91	64.03		64.44		64.76	64.96	64.53	64.34	64.20	64.32	64.37	65.07
GZ-2	97.39	63.97	63.90	64.07	64.33	64.47	64.42	64.79	64.99	64.55	64.35	64.21	64.31	62.39	65.09
GZ-3	99.43	63.92	63.93	64.04		64.45		64.79	64.98	64.53	64.32	64.19	64.31	64.38	65.09
MW-1	98.53	64.03	63.94	64.05		NG		64.84	NG	NG	64.38	64.24	64.36	64.46	65.09
MW-2	98.57	64.01	63.96	64.08		64.45		64.83	65.00	64.56	64.35	64.23	64.35	64.43	65.00
MW-3	98.01	64.00	63.96	64.05		64.46		64.80	64.97	64.57	64.38	64.22	64.33	64.42	65.11
MW-4	98.99	64.01	63.83	63.98	64.37	64.49	64.38	64.82	64.99	64.59	64.40	64.25	64.37	64.44	65.13
MW-5	95.28	64.51	64.51	64.63		65.22		65.44	65.82	65.42	65.16	64.76	64.99	65.09	65.91
MW-6	97.25	63.94	63.89	63.97		64.40		64.74	64.91	64.50	64.30	64.15	64.26	64.35	65.05
MW-7	96.89	63.95	63.90	64.01		64.41		64.77	64.91	64.49	64.29	64.18	64.29	64.37	65.05
MW-8	99.31	63.97	63.91	64.03		64.42		64.78	64.98	64.51	64.33	64.20	64.31	64.39	65.06
MW-9	98.60	64.01	63.95	64.06		64.48		64.83	64.99	64.56	64.37	64.23	64.34	64.44	65.11
MW-10	100.06	63.95	63.89	63.99		64.41		64.79	64.94	64.50	64.30	64.17	64.30	64.38	65.05
MW-11	100.53	63.92	63.90	64.02		64.40		64.78	64.92	64.49	64.30	64.18	64.30	64.38	65.04
MW-12	100.18	64.03	63.97	64.10		66.91		64.85	64.99	64.56	64.38	64.26	64.36	64.45	65.13

^{*} Indicates a limited gauging event due to the presence of SPP in these wells.

Equivalent Head Elevations Over Time January 2003 through December 2003

Monitor Well	MP Elevations	1/14/03	2/6/03	3/24/03	4/16/03	5/9/03	6/12/03	7/11/03	8/27/03	9/26/03	10/21/03	11/5/03	12/9/03
ECS-1	96.50	67.40	65.88	66.30	66.79	67.13	67.08	67.22	67.01	65.11	66.25	66.35	65.96
ECS-2	97.88	66.04	65.79	66.23	66.72	67.02	67.00	67.14	66.93	66.95	66.19	66.28	65.89
ECS-3							De	stroyed					
GZ-1	99.29	66.02	65.76	67.21	66.71	67.00	66.98	67.11	66.89	66.47	66.17	66.27	65.88
GZ-2	97.39	66.06	65.79	66.24	66.76	67.04	67.00	67.14	66.93	66.49	66.22	66.29	65.91
GZ-3	99.43	66.02	65.77	66.22	66.72	67.01	66.99	67.11	66.92	66.47	66.17	66.28	65.90
MW-1	98.53	66.04	65.82	66.26	66.71	67.01	67.14	73.50	66.95	66.51	65.90	NG	NG
MW-2	98.57	66.06	65.80	66.26	66.77	67.03	67.08	67.92	66.97	66.51	66.23	66.87	65.92
MW-3	98.01	66.05	65.79	66.26	66.75	67.04	67.02	67.15	66.96	66.52	66.22	66.31	65.93
MW-4	98.99	66.05	65.81	66.26	66.77	67.03	67.01	67.16	66.94	66.49	66.21	66.29	65.92
MW-5	95.28	66.79	66.58	66.86	67.31	67.67	67.54	67.70	67.48	67.07	66.73	66.78	66.52
MW-6	97.25	65.99	65.75	66.20	66.71	67.00	66.96	67.12	66.91	66.45	66.15	66.25	65.88
MW-7	96.89	65.99	65.73	66.18	66.72	66.96	66.93	67.07	66.86	66.41	66.14	66.24	65.85
MW-8	99.31	66.00	65.75	66.20	66.72	66.97	66.95	67.09	66.90	66.46	66.16	66.21	65.86
MW-9	98.60	66.04	65.79	66.24	66.76	67.03	66.99	67.14	66.94	66.49	66.20	66.29	65.91
MW-10	100.06	65.98	65.67	66.17	66.70	66.96	66.94	67.05	66.89	66.44	66.15	66.25	65.84
MW-11	100.53	65.98	65.71	66.16	66.67	66.95	66.92	67.04	66.88	66.42	66.14	66.23	65.83
MW-12	100.18	66.05	65.79	66.24	66.77	69.02	67.01	67.12	66.94	66.49	66.20	66.28	65.92

Equivalent Head Elevations Over Time January through December 2004

Monitor Well	MP Elevations	1/13/04	2/16/04	3/24/04	4/12/04	5/19/04	6/30/04	7/21/04	8/25/04	9/17/04	10/6/04	11/17/04	12/24/04
ECS-1	96.50	66.86	66.86	NG	66.41	67.09	66.487	66.16	66.11	65.78	66.14	65.73	66.28
ECS-2	97.88	NG	NG	65.94	66.37	66.99	66.42	66.12	66.07	65.73	66.08	65.68	66.25
ECS-3							Dest	royed					
GZ-1	99.29	66.78	66.41	65.90	66.36	66.95	66.38	66.09	66.03	65.72	66.04	65.67	66.20
GZ-2	97.39	66.77	66.95	65.96	66.39	67.03	66.42	66.13	66.09	65.78	66.09	65.72	66.28
GZ-3	99.43	66.79	66.43	65.91	66.38	66.97	66.39	66.11	66.07	65.75	66.07	65.68	67.23
MW-1	98.53	96.81	66.48	65.97	66.42	66.99	66.42	66.17	66.11	65.77	66.09	65.71	66.28
MW-2	98.57	67.06	66.49	65.97	66.49	67.15	66.43	66.16	66.11	65.78	66.11	65.73	66.32
MW-3	98.01	66.82	66.49	65.96	66.40	67.00	66.42	66.15	66.09	65.77	66.10	65.71	66.26
MW-4	98.99	66.83	66.48	65.97	66.40	67.03	66.42	66.13	66.10	66.77	66.11	65.71	66.28
MW-5	95.28	67.44	67.02	66.45	66.83	67.60	66.96	66.62	66.49	66.26	66.56	66.22	66.73
MW-6	97.25	66.76	66.41	65.91	66.34	66.95	66.36	66.09	66.03	65.71	66.05	65.66	66.20
MW-7	96.89	66.74	66.42	65.89	66.34	66.91	66.34	66.08	66.03	62.70	66.04	65.67	66.21
MW-8	99.31	66.76	66.42	65.90	66.36	66.96	66.37	66.08	66.03	65.72	66.05	65.66	66.26
MW-9	98.60	66.81	66.45	65.96	66.39	67.00	66.41	66.13	66.07	65.74	66.09	65.69	66.26
MW-10	100.06	66.73	66.40	65.89	66.34	66.93	66.36	66.07	66.02	65.71	66.05	65.65	66.22
MW-11	100.53	66.73	66.44	65.87	66.33	66.91	66.34	66.05	66.01	65.68	66.03	65.62	66.20
MW-12	100.18	66.80	66.46	65.95	66.40	66.98	66.42	66.13	66.09	65.77	66.13	65.72	66.28

Equivalent Head Elevations Over Time January through December 2005

Monitor Well	MP Elevations	1/11/05	2/1/05	3/18/05	4/22/05	5/13/05	6/17/05	7/15/05	8/29/05	9/16/05	10/31/05	11/28/05	12/21/05
ECS-1	96.50	66.28	NG	67.15	NG	NG	67.47	66.79	65.90	66.09	67.79	67.76	67.83
ECS-2	97.88	66.25	66.97	67.06	68.06	30.91	67.39	66.76	65.86	66.08	67.74	67.68	67.80
ECS-3							Destro	yed					
GZ-1	99.29	66.20	NG	67.03	NG	NG	NG	NG	NG	NG	67.71	67.66	67.76
GZ-2	97.39	66.28	66.95	67.08	68.05	67.96	67.40	66.74	65.86	66.15	67.76	67.72	67.76
GZ-3	99.43	67.23	67.28	67.07	68.01	67.91	67.35	66.69	65.83	65.98	NG	NG	NG
MW-1	98.53	66.28	66.97	67.07	68.04	67.92	67.40	66.74	65.88	65.98	67.8	67.74	67.81
MW-2	98.57	66.32	66.98	67.09	68.07	67.94	67.42	66.78	65.90	66.02	67.82	67.77	67.81
MW-3	98.01	66.26	67.00	67.08	68.05	67.95	67.41	66.77	65.88	74.96	67.8	67.77	67.83
MW-4	98.99	66.28	66.97	66.07	68.05	67.97	67.44	66.78	65.88	65.99	67.69	67.75	67.77
MW-5	95.28	66.73	67.55	67.59	68.64	68.88	67.89	67.23	66.35	66.26	68.16	68.18	68.28
MW-6	97.25	66.20	66.94	67.04	68.03	67.91	67.35	66.71	65.82	65.90	67.75	67.71	67.8
MW-7	96.89	66.21	66.84	67.00	67.96	67.89	67.34	66.70	65.81	65.94	67.75	67.69	67.77
MW-8	99.31	66.26	66.92	67.01	67.98	67.90	67.35	66.70	65.82	65.92	67.76	67.69	67.76
MW-9	98.60	66.26	66.95	67.06	68.02	67.91	67.40	66.74	65.86	65.99	67.79	67.71	67.79
MW-10	100.06	66.22	NG	67.02	67.96	67.87	67.35	66.71	65.82	65.88	67.74	67.66	67.75
MW-11	100.53	66.20	66.86	67.01	67.94	67.85	67.32	66.68	65.80	65.89	67.7	67.65	67.73
MW-12	100.18	66.28	66.97	67.09	68.03	67.93	67.39	66.76	65.88	66.03	67.79	67.74	67.81

SAGE ENVIRONMENTAL

Equivalent Head Elevations Over Time January through December 2006

Monitor Well	MP Elevations	1/27/06	2/20/06	3/31/06	4/21/06	5/8/06	6/23/06	7/28/06	8/18/06	10/19/06	11/9/06
ECS-1	96.29	NG	NG	67.45	67.04	66.90	NG	68.17	67.50	66.54	NG
ECS-2	97.69	68.01	68.25	67.37	66.97	66.84	NG	68.11	67.43	66.49	66.95
ECS-3						Des	stroyed				
GZ-1	99.19	67.96	67.66	67.35	66.97	66.81	68.34	68.06	67.41	66.49	66.93
GZ-2	97.14	68.00	67.72	67.39	66.98	66.85	NG	68.09	67.44	66.50	NG
GZ-3	99.34	67.98	NG	NG	NG	NG	67.49	NG	67.39	NG	NG
MW-1	98.53	68.02	67.74	67.35	NG	66.89	NG	NG	NG	NG	NG
MW-2	98.57	68.05	67.77	67.45	NG	66.91	NG	NG	67.47	NG	NG
MW-3	98.01	68.06	67.77	67.42	NG	66.90	NG	NG	67.45	NG	NG
MW-4	98.99	68.04	67.75	67.44	67.04	66.90	68.39	68.11	67.44	66.56	67.03
MW-5	95.28	68.49	68.18	67.88	NG	67.28	NG	NG	67.94	NG	NG
MW-6	97.25	68.00	67.71	67.39	NG	66.84	NG	NG	67.44	NG	NG
MW-7	96.89	67.97	67.69	67.34	NG	66.83	NG	NG	67.39	NG	NG
MW-8	99.31	67.98	67.69	67.36	NG	66.83	NG	NG	67.39	NG	NG
MW-9	98.60	68.02	67.71	67.40	67.00	66.88	69.36	68.12	67.45	66.54	66.99
MW-10	99.90	67.95	67.66	67.33	NG	67.80	NG	NG	67.37	NG	NG
MW-11	100.53	67.95	67.65	68.32	NG	66.81	NG	NG	67.37	NG	NG
MW-12	100.18	NG	67.74	67.40	NG	66.90	NG	NG	67.43	NG	NG

Equivalent Head Elevations Over Time January through December 2007

Monitor Well	MP Elevations	2/28/07	5/11/07	8/10/07	11/7/07
ECS-1		\	VELL CLOSE	ED	
ECS-2	97.69	67.03	69.66	67.38	66.14
ECS-3		\	VELL CLOSE	ED	
GZ-1	99.19	66.99	68.59	67.38	66.10
GZ-2		\	VELL CLOSE	ED	
GZ-3	99.34	66.99	68.59	67.36	66.14
MW-1		\	VELL CLOSE	ED	
MW-2		\	VELL CLOSE	ED	
MW-3		\	VELL CLOSE	ED	
MW-4	98.99	67.04	68.64	67.44	66.20
MW-5		\	VELL CLOSE	ED	
MW-6	97.25	NG	68.63	67.41	66.16
MW-7		\	VELL CLOSE	ED	
MW-8		\	VELL CLOSE	ED	
MW-9	98.90	67.09	68.60	67.4	66.19
MW-10		\	VELL CLOSE	ED	
MW-11		\	VELL CLOSE	ED	
MW-12		\	VELL CLOSE	ED	

Equivalent Head Elevations Over Time February and May 2008

Monitor Well	MP Elevations	2/8/08	5/7/08
ECS-1	96.29	WELL CLOSED	WELL CLOSED
ECS-2	97.69	66.71	66.99
ECS-3		Destroyed	Destroyed
GZ-1	99.19	NG	NG
GZ-2	97.14	WELL CLOSED	WELL CLOSED
GZ-3	99.34	66.73	67.06
MW-1	98.53	WELL CLOSED	WELL CLOSED
MW-2	98.57	WELL CLOSED	WELL CLOSED
MW-3	98.01	WELL CLOSED	WELL CLOSED
MW-4	98.99	66.80	67.02
MW-5	95.28	WELL CLOSED	WELL CLOSED
MW-6	97.25	66.74	66.96
MW-7	96.89	WELL CLOSED	WELL CLOSED
MW-8	99.31	WELL CLOSED	WELL CLOSED
MW-9	98.60	66.79	67.04
MW-10	99.90	WELL CLOSED	WELL CLOSED
MW-11	100.53	WELL CLOSED	WELL CLOSED
MW-12	100.18	WELL CLOSED	WELL CLOSED

Separate Phase Petroleum Thickness March through December 1999

Monitor Well	2/11/99	3/5/99	4/9/99	5/17/99	6/9/99	7/7/99	8/12/99	9/24/99	10/27/99	11/8/99	11/17/99	12/20/99
ECS-1	0.15	0.25	<.01	NP	NG	NP	0.23	0.01	NP	NP	NG	NP
ECS-2	0.45	0.37	0.11	0.68	0.60	0.61	0.47	0.01	NP	NP	NG	0.38
ECS-3	NP	0.01	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
GZ-1	NP	NP	NG	NP	NP	NP	0.01	0.06	NG	NG	0.04	0.01
GZ-2	0.01	<.01	NP	NP	NP	NP	0.03	0.06	NG	0.05	NG	0.06
GZ-3	NP	<.01	<.01	NP	NP	NP	0.01	0.08	NG	NG	NG	0.01
MW-1	NP	<.01	<.01	NP	NP	NP	0.49	0.25	3.45	0.12	NG	0.39
MW-2	NP	<.01	NP	NP	NP	NP	0.01	NP	NP	NP	NG	NP
MW-3	NP	NP	NP	NP	NP	NP	0.02	0.02	NP	NP	NG	NP
MW-4	NP	<.01	<.01	NP	NP	NP	0.23	0.63	0.54	NG	0.36	0.55
MW-5	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-6	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-7	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-8	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-9	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP

NP = No product

NG = Not gauged

NI = Not installed as of date gauged (Monitor wells MW-5 through MW-9 and vent well VW-1 were installed on April 28 and 29, 1999.)

Separate Phase Petroleum Thickness January through December 2000

Monitor Well	1/19/00	2/17/00	3/21/00	4/26/00	5/30/00	6/27/00	7/24/00	8/9/00	9/14/00	10/23/00	11/15/00	12/26/00
ECS-1	NP	0.01	NP	NP	0.01	NG	NP	< 0.01	NG	< 0.01	NP	NP
ECS-2	NP	0.02	NP	NP	NP	NP	NP	0.06	< 0.01	< 0.01	0.04	0.60
ECS-3	DRY	DRY	NP	DRY	DRY	NP	DRY	DRY	DRY	DRY	DRY	DRY
GZ-1	0.02	0.10	NP	NP	NP	NP	NP	NP	NP	NP	< 0.01	NP
GZ-2	NP	NP	NP	NP	0.02	0.60*						
GZ-3	NP	0.02	NP	NP	NP	NP	NP	NP	NP	NP	0.30	0.10*
MW-1	0.03	0.10	< 0.01	NG	NG	NP	NG	NG	NP	0.38	NP	< 0.01
MW-2	NP	NP	NP	NP	NP	NP						
MW-3	NP	NP	NP	NP	NP	NP						
MW-4	0.61	0.32	NP	NP	NP	NP	NP	< 0.01	NP	0.04	0.34	0.04
MW-5	NP	NP	NP	NP	NP	NP						
MW-6	NP	NP	NP	NP	NP	NP						
MW-7	NP	NP	NP	NP	NP	NP						
MW-8	NP	NP	NP	NP	NP	NP						
MW-9	NP	NP	NP	NP	NP	NP						

NP = No product

NG = Not gauged

(*) = Product thickness estimated with a bailer

Separate Phase Petroleum Thickness January 2001 through December 2001

Monitor Well	1/24/01	2/28/01	3/27/01	4/19/01	5/2/01	6/8/01	7/17/01	8/16/01	8/30/01	9/26/01	10/26/01	11/28/01	12/31/01
ECS-1	NP	0.01	NP	< 0.01	< 0.01	< 0.01	< 0.01	NA	0.02	NP	NP	< 0.01	NP
ECS-2	NP	0.01	NP	NP	< 0.01	NP	NP	NP	NG	NP	NP	< 0.01	< 0.01
ECS-3	NP	NP	NP	NP	NP	NP				Destroy	ed		
GZ-1	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
GZ-2	NP	0.01	NP	< 0.01	NP	< 0.01	NA	NP	NG	NP	NP	NP	NP
GZ-3	0.25	0.01	NP	NP	NP	NP	NG	NA	NP	NP	NP	NP	NP
MW-1	NP	0.01	NP	NP	NP	NP	NP	NP	NG	NP	NP	< 0.01	NP
MW-2	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-3	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	0.04	NP
MW-5	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-6	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-7	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-8	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP

NP = No product

Separate Phase Petroleum Thickness January 2002 through December 2002

Monitor Well	1/30/02	2/13/02	3/14/02	4/5/02*	4/18/02	4/25/02*	5/21/02	6/21/02	7/23/02	8/9/02	9/20/02	10/17/02	11/14/02	12/13/02
ECS-1	NP	0.43'	< 0.01'	<0.01'	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-2	0.01'	0.01'	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3				Des	troyed									
GZ-1	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
GZ-2	0.01'	0.52'	<0.01'	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-3	NP	NP	0.01'	NG	NP	NG	0.01'	<0.01'	NP	NP	NP	NP	NP	NP
MW-1	NP	<0.01'	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-2	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-3	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-4	0.01'	1.36'	0.84'	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-6	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-7	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-8	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-9	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP

NP = No Product

^{*} Indicates a limited gauging event due to the presence of SPP in these wells.

SAGE ENVIRONMENTAL

Separate Phase Petroleum Thickness January 2003 through December 2003

Monitor Well	1/14/03	2/6/03	3/24/03	4/16/03	5/9/03	6/12/03	7/11/03	8/27/03	9/26/03	10/21/03	11/5/03	12/9/03
ECS-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3						Destro	yed					
GZ-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NG	NG
MW-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-6	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-7	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-8	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-10	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-11	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-12	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP

Separate Phase Petroleum Thickness January through December 2004

Monitor Well	1/13/04	2/16/04	3/24/04	4/12/04	5/19/04	6/30/04	7/21/04	8/25/04	9/17/04	10/6/04	11/17/04	12/24/04
ECS-1	NP	NP	NG	NP	NP							
ECS-2	NG	NG	NP	NP								
ECS-3						De	stroyed					
GZ-1	NP	NP										
GZ-2	NP	NP										
GZ-3	NP	NP										
MW-1	NP	NP										
MW-2	NP	NP										
MW-3	NP	NP										
MW-4	NP	NP										
MW-5	NP	NP										
MW-6	NP	NP										
MW-7	NP	NP										
MW-8	NP	NP										
MW-9	NP	NP										
MW-10	NP	NP										
MW-11	NP	NP										
MW-12	NP	NP										

Separate Phase Petroleum Thickness January through December 2005

Monitor Well	1/11/05	2/1/05	3/18/05	4/22/05	5/13/05	6/17/05	7/15/05	8/29/05	9/16/05	10/31/05	11/28/05	12/21/05
ECS-1	NP	NG	NP	NP	NG	NP	NP	NG	NG	NG	NG	NP
ECS-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3						Dest	royed					
GZ-1	NP	NG	NP	NP	NG	NP	NG	NG	NG	NG	NG	NG
GZ-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-6	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-7	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-8	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-10	NP	NG	NP	NP	NG	NP	NP	NG	NG	NG	NG	NP
MW-11	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-12	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP

Separate Phase Petroleum Thickness January through December 2006

Monitor Well	1/27/06	2/20/06	3/31/06	4/21/06	5/8/06	6/23/06	7/28/06	8/18/06	10/19/06	11/9/06
ECS-1	NG	NG	NP	NP	NP	NP	NP	NP	NP	NG
ECS-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3					Des	troyed				
GZ-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NG
GZ-3	NP	NP	NG	NG	NG	NG	NG	NP	NG	NP
MW-1	NP	NP	NP	NP	NP	NP	NG	NG	NG	NG
MW-2	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-3	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-6	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-7	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-8	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-10	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-11	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-12	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG

Separate Phase Petroleum Thickness January through December 2007

Monitor Well	2/28/07	5/11/07	8/10/07	11/7/07
ECS-1	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
ECS-2	NP	NP	NP	NP
ECS-3	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
GZ-1	NP	NP	NP	NP
GZ-2	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
GZ-3	NP	NP	NP	NP
MW-1	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-2	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-3	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-4	NP	NP	NP	NP
MW-5	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-6	NP	NP	NP	NP
MW-7	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-8	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-9	NP	NP	NP	NP
MW-10	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-11	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-12	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED

NP = No Product

Separate Phase Petroleum Thickness February and May 2008

Monitor Well	2/8/08	5/7/08
ECS-1	WELL CLOSED	WELL CLOSED
ECS-2	NP	NP
ECS-3	WELL CLOSED	WELL CLOSED
GZ-1	NG	NG
GZ-2	WELL CLOSED	WELL CLOSED
GZ-3	NP	NP
MW-1	WELL CLOSED	WELL CLOSED
MW-2	WELL CLOSED	WELL CLOSED
MW-3	WELL CLOSED	WELL CLOSED
MW-4	NP	NP
MW-5	WELL CLOSED	WELL CLOSED
MW-6	NP	NP
MW-7	WELL CLOSED	WELL CLOSED
MW-8	WELL CLOSED	WELL CLOSED
MW-9	NP	NP
MW-10	WELL CLOSED	WELL CLOSED
MW-11	WELL CLOSED	WELL CLOSED
MW-12	WELL CLOSED	WELL CLOSED

Sample/Date																		(oncentratio	on					10000	TO STATE OF		24100000			is legal	STATE OF THE PARTY				10000		RIDEM Method	
PARTIE STATE		TE HOLSO																	MW-1							100000000000000000000000000000000000000								Red Ada			n userill	1 Objective	RIDEM GB
Analyte	_	8/12/99			5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	GB	UCL
Volatiles, Purgeal	ble Aromatic	es by EPA 8	8021B (ug/l):																			- MARCHES							To Marie To			Name of		A COLUMN	20.35.30	NAME OF TAXABLE PARTY.	Groundwater	CCL
Benzene	11000 ^b	SPP	SPP	SPP	NS	2700 ^h	870 ^b	SPP	1600 ^b	3200 ^b	SPP	1300 ^b	2000 ^b	890 ^b	<350 ^d	5.2	3.7	23	NS	120	NS-SFR	NS-SFR	8.1	NS-SFR	8	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	2800 ^b					1700 ^b	420		2400 ^b	<3000°		<1200	1200	1600 ^b	1200	64	12	7.2		56			47		8.1		<1		8.7									1600	16000
MTBE	400000 ^b					23000 ^b	8800 ^h		16000 ^b	150000 ^b		66000 ^b	47000 ^b	17000 ^b	3900	8.9	7.2	490		50			5.3		<1		<1		2.2									5000	NE
Toluene	26000 ^{ba}					6500 ^b	4700 ^b		9700 ^b	16000 ^b		3200 ^b	8600 ^b	6500 ^b	2700 ^b	97	29	13		110			10		2.3		<1		<1									1700	21000
Total Xylenes	15000					11000	3800		22000	18000		15000	9400	11000	12000	450	230	110		360			320		54		<1		56									NE	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x).

- NE: No allowable limit is established for the substance
- NS: Not Sampled
- NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

- Sample Results:
- b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u: Analyte concentration in this sample exceeds the RIDEM UCL.
- v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date								2000										0	oncentratio	n	100000						PER INC	2300							No.			RIDEM Method	DIDENTOR
															19-11-1				MW-2																			1 Objective	RIDEM GB
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	GB	
Volatiles, Purgeal	ble Aromati	ics by EPA 8	021B (ug/l)	:	4.50																																		
Benzene	6200 ^b	SPP	2200 ^b	2500 ^h	1100 ^b	690 ^b	2200 ^b	360 ^b	890 ^b	180 ^b	210 ^b	<20	<3	<50	<2	<25	<5	<15	<8	<1	NS-SFR	NS-SFR	<3	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR		18000
Ethylbenzene	2100 ^b		1200	1100	440	320	2500 ^b	2900 ^b	670	800	2900 ^b	1300	120	2200 ^h	140	1400	330	1500	560	180			320		110		43		45									1600	16000
MTBE	22000 ^b		630	1800	470	24	<200	290	61	<50	<200	<20	5.5	<50	4.5	<25	5.5	<15	<8	<1			5		<1		1.2		1.5									5000	NE.
Toluene	13000 ^b		4200 ^b	6300 ^b	1700 ^b	340	13000 ^b	5900 ^b	1900 ^b	3000 ^b	9200 ^h	540	26	3600 ^h	59	2200 ^b	200	710	140	21			49		<1		<1		<1									1700	21000
Total Xylenes	7800		3800	4400	1900	570	8300	9700	2700	2600	11000	2000	97	7200	170	5300	770	5000	2380	400			710		48		36		12									NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method. <x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

- NE: No allowable limit is established for the substance

- NS: Not Sampled
 NS-SFR: Not Sampled, Sampling Frequency Reduced
 SPP: Separate phase petroleum present
 Sample Results;
 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
- d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u: Analyte concentration in this sample exceeds the RIDEM UCL.
- v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

 * Analysis via EPA Method 8260B

Sample/Date			Maria															(Concentratio	08	Marie Control			NAME OF STREET				DOM: N			ZIS B	NEW YORK						RIDEM Method	DIDENCE
																			MW-3					(C) 10 (C)			14.260											1 Objective	Crowndwater
Analyte	5/17/99*			2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	THE RESIDENCE	UCL
Volatiles, Purgeable	e Aromatics	by EPA 802	1B (ug/l):														6.00		1777 (1014)																			GB Groundwater	ec.
Benzene	1700 ^b	SPP	1900 ^b	1300 b	270 ^b	53	120	39	35	13	<10	<10	<10	<10	<1()	<10	<2	1.5	<3	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	2400 ^h		3000 b	2300 h	920	170	410	450	820	200	330	300	260	88	89	80	44	50	3	18			<1		21		24		20									1600	16000
MTBE	<750		390	133	<50	<50	<20	<20	<5()	5.5	<10	- 11	<10	<1()	<10	<10	2.9	2.8	<3	1.6			<1		<1		1.7		1.1									5000	NE
Toluene	11000 ^b		12000 b	8200 b	3700 ^b	880	1400	670	3300 ^b	200	530	110	300	150	120	110	20	11	<3	3.6			<1		<1		<1		<1									17(X)	21000
Total Xylenes	12600		17000	9700	4500	980	2000	1500	4700	720	17(X)	1000	1700	660	680	1000	260	300	262	240			7.1		150		160		120									NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<s: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x):

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced

SPP: Separate phase petroleum present

Sample Results;
b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

Anthough the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 Analyte concentration in this sample exceeds the RIDEM UCI.
 Analyte concentration in this sample exceeds the RIDEM UCI.
 Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
 Analysis via EPA Method 8260B

Sample/Date																		(Concentrati	08																		RIDEM Method	PIDEM CR
000000000000000000000000000000000000000							20.00												MW-4		10.019								12270									1 Objective	Croundanter
Name and Address of the Owner, where the Owner, which is the Owner, which	5/17/99*			2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08		UCL
Volatiles, Purgeable	e Aromatics l	by EPA 80.	21B (ug/l):																																			GB Groundwater	CCL
Benzene	<20000 ^d	SPP	NS	SPP	12000 ⁵	SPP	SPP	16000 ^b	11000 ^b	10000p	SPP	SPP	<15000 ^d	<15000 d	<15000°	3800 ^b	2600 ^b	NS	3100 ^h	2600 ^b	2200 ^b	1500 ^b	960 ^b	1200 ^b	120	200 ^b	120	160 ^b	22	31	82	130	27	9.1	64	46	42	140	18000
Ethylbenzene	<200000 th				2300 ^b			8900 ^b	5100 ^b	<10000 ^d			$<15000^{4}$	<15000°	<15000 ^d	2900 ^b	<2000 d		2400 ^b	2400 ^b	1800 ^b	1600	1600	1000	120	520	94	310	190	100	270	430	210	160	600	790	590	1600	16000
MTBE	550000 ^b				940000°			820000 b	310000 ^b	560000 ^b			720000 ^b	650000 ^b	680000 ^b	220000b	130000 ^b		170000°	48000 ^b	42000 ^b	36000 ^b	10000 ^b	11000 ^b	550	330	41	30	16	21	35	50	<1	16	77	.47	6.3	5000	NE
Toluene	26000 ^{bu}				26000 ^{ho}			41000 ^{bo}	37000 ^{ha}	42000 ^{lm}			41000^{lm}	29000 ^{bu}	33000^{bu}	16000 ^b	13000 ^b		20000 ^b	14000 ^b	5000 ^b	3800 ^h	4200 ^b	1700	260	1000	170	220	86	33	180	290	140	130	700	410	200	1700	21000
Total Xylenes	<20000				16000			29000	23000	24000			60000	20000	<15(XX)	21000	13000		17600	16000	12000	12000	11000	6200	970	4100	720	1000	1100	590	960	1500	540	880	3200	3400	2500	NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);</p>
NE: No allowable limit is established for the substance.

NS: Not Sampled NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results; b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

Astaryte concentration in trus sample exceeds RIDEM GB Groundwater Objectives;
 d. Although the analyte was not detected, the lab-ratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u. Analyte concentration in this sample exceeds the RIDEM UCL.
 v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit.
 Analysis via EPA Method 8260B.

Sample/Date						12,131,131					SERVICE STATE				TO SER	TO-SECOND			Concentrati	ion			Name of the last		SOLIS III	MINISTER OF THE		TARREST.	ESCALER.			District Co.						RIDEM Method	nunrus en
													ALC: NO						MW-5										THE DIE									1 Objective	RIDEM GB
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	GB	UCL
Volatiles, Purgeab	de Aromatic	cs by EPA 8	021B (ug/l)	:				Marallo I											District the Party of the Party															OF ALL RACE	A VARIOUS		PRICE BEING	Groundwater	OCE.
Benzene	<5	<1).5	<().5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	<.5	<0.5	<0.5	<0.5	< 0.5	<1).5	<0.5	< 0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1									1600	16000
MTBE	<5	12	<1	1.3	<1	<1	1	<1.0	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1									5000	NE.
Toluene	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<	<1	<	<1	<1	<1			<1		<1		<		<1									1700	21000
Total Xylenes	<5	<0.5	< 0.5	<0.5	<1).5	<0.5	<0.5	<0.5	<0.5	<1.0	4.7	<1	<1	<1	<1	<1	<1	<1	<	<			<1		<1		<1		<									NE	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method. <x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x); NE: No allowable limit is established for the substance

NS: Not Sampled NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results.

b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives.

d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives.

u: Analyte concentration in this sample exceeds the RIDEM UCL.

v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

* Analysis via EPA Method 8260B

Sample/Date					100000									1000			Leading.	(Concentratio	m																	-	RIDEM Method	PIDEM CR
						150 100 100									200				MW-6			AND SHEETING															ACCURATE STATE	1 Objective	Control
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	GB	UCL
Volatiles, Purgeab	le Aromatic	es by EPA 8	021B (ug/l):												1818									MULEIR														Groundwater	UCL
Benzene	6.2	1.2	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0	<1	<1	<1	<1	<	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<2	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	<1	<1	NS-SFR	NS-SFR	<1	140	18000
Ethylbenzene	<5	3.5	- 11	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<2		<1		<1		<1				<1	<1			<1	1600	16000
MTBE	<5	8.6	<1	2.4	3.9	4	3.3	5.7	13	12	4	4.7	<1	<1	<1	1.7	4.9	1.7	1.6	1.2			210		<1		<1		<1				<1	<1			<1	5000	NE.
Toluene	<5	6.8	20	<1).5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<2		<1		<1		<1				<1	<1			<1	1700	21000
Total Xylenes	<.5	21	62	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			e2		<1		<1		<1				2	2				NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled
NS: Not Sampled
NS-SFR: Not Sampled, Sampling Frequency Reduced
SPP: Separate phase petroleum present

- Sample Results:

 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives:

 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives.

 v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM UCL.

 v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
- * Analysis via EPA Method 8260B

Sample/Date																		(Concentrati	00		10000000		SALE DAY	Market .	TEN ST	a particular										101100	RIDEM Method	DIDENCE
						7.00								1000		Application .			MW-7	11-15-16					230 11 11	12 12 12	Indiana.				170171-011							1 Objective	Consideration
Analyte	5/17/99	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	THE PERSON NAMED IN	UCL
Volatiles, Purgeable	Aromatics I	by EPA 802	1B (ug/l):						70000			14.0												A DESTRUCTION				CID WATER	S-LAND					AGENE				GB Groundwater	CCL
Benzene	59	140 ^b	73	56	17	11	2.8	<0.5	0.68	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	<5	<0.5	<0.5	<1).5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1									1600	16000
MTBE	<5	<1	<1	<1	11	3.2	<1	1	11	1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<		<1		<1									5000	NE
Toluene	<5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<			<1		<1		<1		<1									1700	21000
Total Xylenes	<5	<(),5	<0.5	<0.5	<0.5	<(),5	<0.5	<0.5	<0.5	<1,()	.5	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1									NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method, < x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x), NE: No allowable limit is established for the substance

- NS: Not Sampled NS-SFR: Not Sampled. Sampling Frequency Reduced SPP: Separate phase petroleum present

- Sample Results;
 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

- d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u: Analyte concentration in this sample exceeds the RIDEM UCL.
 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date					CA SING		WING TO SE		10000						(September 1)			(Concentration	on a								NAME OF TAXABLE				Marie Sala			DOM: NO	STEEL STATE		RIDEM Method	
				REGISTED IN					MW-8 5/2/01 8/16/01 11/28/01 2/13/02 5/21/02 8/9/02 11/14/02 2/13/03 5/9/03 8/27/03 11/5/03 2/16/04 8/15/04 11/17/04 2/1/05 5/13/05 8/29/05 11/28/05 2/20/06 5/8/06 8/18/06 11/9/06 2/28/07 5/11/07 8/10/07 11/7/07 2/8/08 5/7/08 GB Ground GB Ground		1 Objective	RIDEM GB																											
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08		UCL
Volatiles, Purgeable	Aromatics l	by EPA 802	1B (ug/t):					MW-8 0 2/28/01 \$/2/01 \$/16/01 11/28/01 2/13/02 \$/21/02 \$/9/02 11/14/02 2/13/03 \$/9/03 \$/27/03 11/5/03 2/16/04 \$/19/04 \$/25/04 11/17/04 2/1/05 \$/13/05 \$/29/05 11/28/05 2/20/06 \$/8/06 \$/18/06 11/9/06 2/28/07 \$/11/07 \$/10/07 11/7/07 2/8/08 \$/7/08 GB Gr		GB Groundwater	UCL																												
Benzene	7500 ^b	10000 ^b	13000 ^h	8800 ^b	12000 ^h	5600 ^b	5500 ^h	3100 ^b	2400 ^h	1400 ^b	2000 ^b	1200 ^b	320 ^b	100	67	8.2	6.6	5.5	36	23	NS-SFR	NS-SFR	20	NS-SFR	1.3	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	2500 ^b	<2500 d	<2500 ^d	1800 ^b	2700 ^b	1500	1500	1900 ^b	1500	1500	1300	890	380	88	130	16	27	18	15	14			25		20		<1		7.1									1600	16000
MTBE	440000 ^b	780000 ^b	560000 ^b	240000 ^b	410000 ^b	85000 ^b	33000 ^b	7100 ^b	3700	36000 ^b	44000 ^b	19000 ^b	7500 ^b	2600	1400	52	22	53	680	620			12		6		<1		1.4									5000	NE.
Toluene	10000 ^b	12000 ^h	13000 ^b	14000 ^b	17000 ^b	12000 ^b	10000 ^b	14000 ^b	6700 ^b	6100 ^b	3200 ^b	2000 ^b	<150	<5()	<5()	<1	2.8	<1	d	5.4			<1		<1		<1		<1									1700	21000
Total Xylenes	10000	7500	<2500	6900	86(X)	5800	4800	8000	5400	66(X)	4700	2600	1300	480	1200	43	38	3.6	6.3	26			17		23		<1		4.3									NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method. < x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x): NE: No allowable limit is established for the substance

- NS. Not Sampled NS-SFR: Not Sampled. Sampling Frequency Reduced SPP. Separate phase petroleum present

- SET: Separate praise performing present

 Sample Results.

 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives:
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u: Analyte concentration in this sample exceeds the RIDEM UCL.

 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

 1. Subsection EDM Addition 18 (1608).
- * Analysis via EPA Method 8260B

Sample/Date							31714					BEISH			2000				Concentratio	n												ALE CA						RIDEM Method	RIDEM GB
									de line	CONTRACT				11/25/01					MW-9								THE REAL PROPERTY.											1 Objective	Groundwater
Analyte	5/17/99	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	GB Groundwater	UCL
olatiles, Purgeable	e Aromatics	by EPA 802	21B (ug/l):	APSONA .																			1																
Benzene	<2500 ^d	<250 ^d	<25	1.5	4.8	<5()	120	610 ^b	1700 ^b	2500 ^b	5000 ^b	5000 ^b	8000 ^b	9400 ^b	11000 ^b	<10000 ^d	8300 ^b	8000 ^b	4000 ^b	4200 ^b	4600 ^b	2800 ^b	1800 ^b	280 ^b	450 ^b	1500 ^b	430 ^b	660 ^b	370 ^b	360 ^b	210 ^b	360 ^b	140	61	73	93	38	140	18000
Ethylbenzene	<2500 ^d	<250	<25	<0.5	<0.5	<50	<1(X)	<100	<1000	<2000°	<5000 ⁴	<5000 ^d	<5000 ^d	<5000 ^d	<5000 ^d	<10000 ^d	<2000 d	<4000 d	<2000°	<2000 d	<2000 d	<800	<400	<100	220	600	<40	190	45	58	<15	150	73	- 11	62	14	160	1600	16000
MTBE	120000 ^b	96000 ^b	6100 ^b	1000	9300 ^b	3300	13000 ^b	850000 ^b	140000 ^b	210000 ^b	250000 ^b	160000 ^b	300000b	520000 ^b	520000 ^b	590000 ^b	620000 ^b	570000°	250000 ^b	280000 ^b	230000 ^b	110000°	53000 ^b	11000 ^b	16000 ^b	48000 ^b	4600	14000 ^b	4000	5800 ^b	1600	3400	780	100	20	42	12	5000	NE.
l'oluene	<2500 ^d	<250	<25	<0.5	<0.5	<50	<100	220	<1000	<2000°	<5U00 ^d	<5000 ^d	<5000 d	<5000 ^d	<5000°	<10000 ^d	<2000 d	<4000 d	<2000 d	<2000 d	<2000 d	<8(X)	<400	<100	<120	<500	<40	<100	<25	<50	<15	<25	2.9	<1	6	1.1	- 11	1700	21000
Total Xylenes	<2500	<250	<25	<0.5	<0,5	<50	<100	230	<1000	<2000	<5000	< 9000	<5000	<5000	<5000	<10000	<2000	<4000	<2000	<2000	<2000	<800	<400	<100	160	<500	<40	330	<25	110	<15	230	31	9.4	74	4	120	NE.	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

- Sample Results:

 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives:
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u: Analyte concentration in this sample exceeds the RIDEM UCL.

 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date															17500			(oncentratio	28								No. of Street, or other Designation of the Lorentz				STATE OF THE				NAME OF TAXABLE PARTY.		RIDEM Method	DIDEM CR
Analyte	5/17/99	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	MW-10 11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/97	2/8/68	5/7/08	1 Objective	Groundwater
Volatiles, Purgeabl	e Aromatics		21B (ug/l):		-	1 000100	100000	22000		- Control	11/20001	2010000	-	05 27 012	101465	E Lives	0171100	102/100	11/2/00	Diese	213/04	0.000	101000	20 10 40	0710400	W B M III	102000	ar and 010	2708 000	19 100 00	1112100	22007	211107	G 10:07	107/07	2000	247768	GB Groundwater	UCI.
Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	17	<5	2.2	<150 ^d	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene]											1 [<5	0	<1	<150	<1	<1	<1	<1			<1		<1		<1		<1									1600	16000
MTBE		1								1		1 1	300	260	79	8700 ^b	58	82	130	26			7.1		2.4		7		9.4									5000	NE
Toluene]												<5	<5	<1	<150	<1	<1	<1	<1			<1		<1		<		<1									1700	21000
Total Xylenes													<5	0	<1	<150	<1	<1	<1	<1			<1		<1		<1		<1									NE	NE:

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

- <x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);</p>
 NE: No allowable limit is established for the substance

NS: Not Sampled NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results:

- Sample Results;

 Simple Results:

 Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives,

 d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u. Analyte concentration in this sample exceeds the RIDEM UCL.

 v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date										0.00					KIND OF	NAME OF TAXABLE PARTY.		(oncentration	1					No.													RIDEM Method	PIDEM CR
100000000000000000000000000000000000000																			MW-11				-1111110										DOM:					1 Objective	Groundwater
Analyte	5/17/99	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08		UCL
Volatiles, Purgeable Are	omatics by E	EPA 8021B	(ug/l):							ARABA S				SEE		THE REAL PROPERTY.						MELON	214233															GB Groundwater	r
Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<1	<1	<	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene													<1	<1	<1	<	<1	<1	<1	<1			<1		<1		<1		<1									1600	16000
MTBE										1			<1	<1	<1	<1	<1	1.6	1.5	<1			8.8		5.5		2		1.6									5000	NE
Toluene										1			1.5	<1	<1	<	<1	<1	<1	<1			<1		<1		<1		<1									17(X)	21000
Total Xylenes													<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<		<1									NE.	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

- <x. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);</p>
 NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results:

- Sample Results.

 b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives.

 v. Analyte concentration in this sample exceeds the RIDEM UCL.

 v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit.

Sample/Date																			Concentratio MW-12	n																		RIDEM Method 1 Objective	RIDEM GB
Analyte Volatiles, Purgeable Ar	5/17/99 omatics by	8/12/99 EPA 8021B	11/9/99 (ug/l):	2/17/00	5/30/00	8/9/00	11/15/00	9 2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	GB Groundwater	UCL
Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<1	<1	<1	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	1												<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1									1600	16000
MTBE	1												<1	<1	1.1	<1	2.4	12	19	20			4		2		1.8		1.5									5000	NE
Toluene	1												<1	<1	<1	<1	<1	<	<1	<1			<1		<1		<1		<1									1700	21000
Total Xylenes	1												<1	<1	<1	<1	<1	<1	<1	<1			<1				<1		<1									NE	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method. < x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x). NE: No allowable limit is established for the substance

- NS: Not Sampled
 NS: Soft Sampled, Sampling Frequency Reduced
 SPP. Separate phase petroleum present

Sample Results:

- Sample Results:
 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives:
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives:
 u: Analyte concentration in this sample exceeds the RIDEM UCT.
 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date				100000			NAME OF THE OWNER, OWNE				IS WELL			STATE OF THE PARTY OF			Colores de la co		Concentratio	in .	SUBMITE S	The State of	THE REAL PROPERTY.									Blinder			TABLE !	2018.2		RIDEM Method	numera en
				WHEN THE									1000				100000		ECS-1													MADE IN				A LOCAL DE		I Objective	RIDEM GB
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/30/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	NAME OF TAXABLE PARTY.	UCL
Volatiles, Purgeable	Aromatics b	by EPA 8021	B (ug/l):					Selli-											ALP DOOR			THE STATE									ALC: UNKNOWN							GB Groundwater	r CCL
Benzene	<2500 ^d	SPP	2000 ^b	SPP	SPP	SPP	<2500 ^d	SPP	SPP	SPP	SPP	SPP	<300 ^d	<300 ^d	<300 ^d	<20	<1	<1	<1	<1	NS-SFR	NS-SFR	<5	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	8200 ^b		5400 ^b				4000 ^b						2800 ^b	2500 ^b	660	49	<1	1	4.3	9.6			52		<1		<1		<1									1600	16000
MTBE	<2500		<500				6700 ^b						<300	<3()()	<300	<20	<1	<1	<1	1.1			<5		<1		<1		<1									5000	NE
Toluene	49000 ^{bu}		44000 ^{bq}				28000 ^{ho}						12000 ^b	8700 ^b	1000	33	<1	1.6	5.7	- 11			47		<1		<1		<1									1700	21000
Total Xylenes	52000		36000				26000						39000	.34000	16000	1700	22	99	229	280			1400		<1		<1		<1									NE.	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method, < x. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced

SPP: Separate phase petroleum present Sample Results;

- b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

- Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 White the concentration in this sample exceeds the RIDEM UCL.
 Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit.

Sample/Date															/				Concentrati	on																dec la		RIDEM Method	PIDENCE
350000000000000000000000000000000000000	200															THE REAL PROPERTY.			ECS-2															1914,000	September 1			1 Objective	Coundwater
Analyte	5/17/99	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08		UCL
Volatiles, Purgeable	Aromatics b	y EPA 8021	1B (ug/l):																			The State of					STATE OF STATE					222/ALIES		100000			NO SALES	GB Groundwater	CCL
Benzene	SPP	SPP	SPP	SPP	3000 ^b	SPP	SPP	SPP	SPP	4500 ^b	SPP	SPP	680 ^b	260 ^b	180 ^b	350 ^b	160 ^b	79	450 ^b	NS	380 ^b	1100 ^b	510 ^b	900 ^h	20	200 ^b	110	13	69	.5	180 ^b	61	1.4	<20	49	49	<20	140	18000
Ethylbenzene					3900 ^b					3000 ^b			1000	720	620	240	80	320	430		250	710	490	190	140	760	270	180	620	140	950	720	39	360	990	990	230	16(X)	16000
MTBE					9000 ^b					1400			1500	170	<100	620	2500	58	280		130	160	<4()	28	<4	<20	<10	d	<10	<5	<15	24	<1	<20	<20	<20	<20	5000	NE.
Toluene					34000 ^{hu}					24000 ^{bu}			3800 ^b	1300	770	600	880	440	980		1600	6400 ^b	4400 ^h	1500	450	2300 ^b	870	550	1600	340	1900 ^b	1900 ^b	74	680	2500 ^b	2500 ^b	590	1700	21000
Total Xylenes					23000					20000			11000	6500	5600	1600	920	3800	2900		2500	6500	5000	2700	980	5400	2300	1300	4100	980	6100	5900	330	2800	7400	7400	1700	NE.	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method:

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced

SPP: Separate phase petroleum present Sample Results:

- b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
- d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u: Analyte concentration in this sample exceeds the RIDEM UCI.
 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date																		(oncentrati	98																		RIDEM Method	PIDEM CR
Analyte	5/17/99*	* 8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/30/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	GZ-1 11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	1 Objective GB	Groundwater
Volatiles, Purgea	ble Aromat	tics by EPA I	8021B (ug/l	:			2,000															2000		(6)						Total Control								Groundwater	UCL
Benzene	<100000°	th <25000 th	NS	SPP	32000 ^{ba}	<0.5	SPP	23000 ^{hu}	14000 ^b	13000 ^b	18000 ^{bu}	16000 ^b	9000 ^h	6900 ^b	8500 ^b	2500 ^b	2400 ^b	1900 ^b	2100 ^b	2400 ^b	1500 ^b	1800 ^b	2100 ^b	NS	NS	1800 ^b	1400 ^b	930 ^b	1400 ^b	1000 ^b	1100 ^b	1600 ^b	490 ^b	1500 ^b	1400 ^b	NS	300 ^b	140	18000
Ethylbenzene	<100000°	^{dv} <25000 ^{dv}			5700 ^b	<0.5		7100 ^b	4300 ^b	<8000 ^d	<8000 ^d	<10000 ⁴	<3()()() ^d	<3()()() ^d	3300 ^b	1000	1200	1300	1800 ^b	2200 ^b	1700 ^b	2600 ^b	3900 ^b			3900 ^b	3300 ^b	1700 ^b	4000°	2000 ^b	2700 ^b	3600 ^b	2200 ^b	3200 ^b	4100 ^b		1500	1600	16000
MTBE	2600000 ^b	3700000 ^b			2500000 ^b	29		600000 _p	370000 ^b	560000 ^b	670000 ^b	460000 ^b	150000 ^b	150000 ^b	160000 ^b	33000 ^b	16000 ^b	9600 ^b	12000 ^b	9000°	2200	2400	4400			<250	<150	<75	<150	<150	<150	<1.50	<1	<160	<160		<80	5000	NE
Toluene.	<100000	d 60000 ha			62000 ^{hu}	0.74		50000 ^{hu}	22000 ^{bu}	38000 ^{fm}	45000 ^{ba}	45000 ^{bu}	30000 ^{bu}	27000 ^{hu}	46000 ^{ba}	11000 ^b	8300 ^b	9800 ^b	14000 ^b	19000 ^b	9700 ^b	16000 ^b	39000 ^{hu}			32000 ^{bu}	20000 ^b	10000 ^b	22000 ^{bu}	15000 ^{bu}	20000 ^b	25000 ^{lm}	8000 ^b	22000 ^{hu}	21000 ^b		7400 ^b	1700	21000
Total Xylenes	<100000	5,5000			28000	<0.5		32(00)	16000	12000	12000	11000	14000	14000	23000	6200	6200	6300	9000	12000	7400	12000	22000			23000	19000	10000	22000	1,3000	18000	24000	12000	22000	29000		9600	NE:	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

- Sample Results; b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
- a. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives

 a. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 b. Analyte concentration in this sample exceeds the RIDEM UCC.
 b. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

 Analysis via EPA Method 8260B

Sample/Date																		(oncentratio	on																		RIDEM Method	DEDELLOR
																			GZ-2																			1 Objective	Convenientes
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08	GB	UCL
Volatiles, Purgeal	ble Aromatic	es by EPA	8021B (ug/	1):								IS IS CALLED							Table 1 St.									Date Ball										Groundwater	
Benzene	20000 ^{hu}	SPP	SPP	4000 b	5200 ^b	11000 ^b	SPP	SPP	1600 ^b	2600 ^h	NS	SPP	<400 ^d	730 ^b	25	68	<4()	<20	<30	<25	<25	<10	<8	<10	<3	<40	<10	<5	<20	<10	NS	NS	NS	NS	NS	NS	NS	140	18000
Ethylbenzene	3200 ^b			1700 h	1300	2300 ^b			1800 ^b	2200 ^b			1100	1300	310	170	450	210	330	120	96	120	43	25	5.2	<40	27	.5	<20	<10								1600	16000
MTBE	<1200			10000 b	2300	<8()()			410	<400			<400	<4()()	.3()	<3.5	<40	<20	<30	<25	<25	<10	<8	<10	<.3	<4()	<10	<.5	<20	<10								5000	NE
Toluene	40000 ^{bu}			19000 b	20000 ^b	36000 ^{bu}			16000 ^b	26000 ^{bu}			5700 ^b	13000 ^b	380	1900 ^b	2300 ^b	560	920	230	140	230	140	97	29	160	69	18	53	<10								1700	21000
Total Xylenes	20000			15000	17000	21000			23000	27000			29000	16000	3800	4200	6400	5400	9300	6400	37(0)	3300	22(X)	2100	600	9100	3500	1600	5900	2200								NE	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method, cx: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled NS-SFR: Not Sampled. Sampling Frequency Reduced SPP. Separate phase petroleum present

Sample Results:

- Example Results:

 b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives;
 u: Analyte concentration in this sample exceeds the RIDEM UCC.
 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
 4 Analysis via EPA Method 8260B

Sample/Date				36121															Concentration	on																GENERAL		RIDEM Method	RIDEM GR
																			GZ-3					1000000	7,000		Part Colonia											1 Objective	Groundwater
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/30/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	5/7/08		UCL
Volatiles, Purgeable	Aromatics by	y EPA 802	1B (ug/l):		14 / 10	269.43								1071111		707											131-121-20		1111111						10.11			GB Groundwater	ec.
Benzene	<50000 ^{dv}	SPP	SPP	SPP	29000 ^{bq}	NS	SPP	SPP	6200 ^b	12000 ^b	13000 ^b	9200 ^b	SPP	5700 ^b	1800 ^b	790 ^b	590 ^b	1600 ^b	1800 ^b	1300 ^b	1200 ^b	1100 ^b	1200 ^b	670 ^b	490 ^b	750 ^b	660 ^b	580 ^b	NS	660 ^b	1100 ^b	880 ^b	630 ^b	850 ^b	580 ^b	580 ^b	100	140	18000
Ethylbenzene	<50000 ^{dv}				5200 ^b				2500 ^b	<5()()() ^d	<5000 ^d	<8000 ⁴		3000 ^b	1500	580	510	2000 ^b	2200 ^b	2400 ^h	2600 ^b	2200 ^b	2600 ^b	2900 ^b	2600 ^h	2200 ^b	3100 ^b	2800 ^b		2400 ^b	3300 ^h	2700 ^h	2500 ^b	2500 ^b	2100 ^b	2100 ^b	1100	1600	16000
MTBE	1400000 ^b				1900000 ^b				220000 ^b	510000 ^b	420000 ^b	560000 ^b		160000 ^b	24000 ^b	3000	4400	8400 ^b	20000 ^b	12000 ^b	39(X)	1200	330	<1()()	<75	<100	<100	<100		<100	<100	<100	<1	<100	<100	<100	<5()	5000	NE
Toluene	<50000°				62000 ^{hu}				22000 ^{bq}	33000 ^{hu}	45000 ^{bu}	40000 ^{lru}		26000 ^{hu}	9000 ^b	1700 ^b	1400	11000 ^b	14000 ^b	14000 ^b	15000 ^b	13000 ^b	16000 ^h	14000 ^b	10000 ^b	11000 ^b	17000 ^b	9900 ^b		8200 ^b	11000 ^b	9000 ^b	6200 ^h	7800 ^b	6300 ^b	6300 ^b	2400 ^h	1700	21000
Total Xylenes	<50000				33000				17000	15000	21000	30000		25000	11000	3500	2400	9900	13500	15000	15000	14000	17000	18000	16000	17000	20000	19000		18000	24000	21000	14000	20000	19000	19000	10000	NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

- NE: No allowable limit is established for the substance
 NS: Not Sampled
 NS:SFR: Not Sampled. Sampling Frequency Reduced
 SPP: Separate phase petroleum present
 Sample Results:
 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u: Analyte concentration in this sample exceeds the RIDEM UCI.
 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
 analysis via EPA Method 8266B

STATUS REPORT FOR PERIOD COVERING

JANUARY THROUGH MARCH 2008

172 Armistice Blvd.

S & H SUNOCO

Pawtucket

905 CRANSTON STREET Rhode Island CRANSTON, RHODE ISLAND

02860

(LS-0757)

401-723-9900

FAX 401-723-9973

Submitted to:

SAGE

Ms. Paula-Jean Therrien Rhode Island Department of **Environmental Management** Office of Waste Management 235 Promenade Street Providence, Rhode Island 02908

Prepared for:

S & H Realty, Inc. P.O. Box 41634 Providence, Rhode Island 02904

Prepared by:

SAGE Environmental, Inc. 172 Armistice Blvd Pawtucket, Rhode Island 02860

SAGE Project No. R016

STATUS REPORT FOR PERIOD COVERING JANUARY THROUGH MARCH 2008 S & H SUNOCO 905 CRANSTON STREET CRANSTON, RHODE ISLAND (LS-0757)

Submitted to:

Ms. Paula-Jean Therrien
Rhode Island Department of Environmental Management
Office of Waste Management
235 Promenade Street
Providence, RI 02908

Prepared for:

S & H Realty, Inc. P.O. Box 41634 Providence, Rhode Island 02904

Prepared by:

SAGE Environmental, Inc. 172 Armistice Blvd Pawtucket, RI 02860

SAGE Project No. R016

172 Armistice Blvd.
Pawtucket, Rhode Island 02860
401-723-9900
FAX 401-723-9973
www.sageenviromental.net

Principal

RECEIVED D.E.M. / O.W.M.

May 12, 2008

2008 MAY 13 P 12: 13

SAGE ENVIRONMENTAL

Ms. Paula-Jean Therrien
Rhode Island Department of Environmental Management
Office of Waste Management
235 Promenade Street
Providence, Rhode Island 02908

RE: Status Report

S&H Sunoco (LS-0757) 905 Cranston Street Cranston, Rhode Island SAGE Project No. R016

Dear Ms. Therrien:

Enclosed please find a Status Report documenting activities related to the soil vapor extraction (SVE) remediation system operating at the referenced Site. This report documents monitoring, operation, and maintenance activities for the approximate period from January 1, 2008 through March 31, 2008.

Should you have any questions regarding the contents of the report, please contact this office.

Sincerely,

SAGE Environmental, Inc.

Brian F. Koch Senior Geologist

BFK/BWC:car

Enclosure

c: Mr. Frank Hindle, S&H Realty, Inc.

R016R

TABLE OF CONTENTS

1.0	INTRODUCT	ION1	
2.0 2.1 2.2 2.3 2.4 2.5	Groundwater Separate Phas Water Table I Groundwater	TER MONITORING	
3.0	SOIL VAPOR	EXTRACTION SYSTEM MONITORING6	,
4.0		ND CONCLUSIONS7	
5.0	RECOMMEN	DATIONS9	,
Figur	res	•	
	Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Site Plan Daily Average Levelogger Readings and Rainfall Levelogger Readings and SVE Influent PID Readings	
Appe	ndices		
	Appendix A Appendix B	Monitor Well Gauging Summary Logs Groundwater Sampling Laboratory Analytical Data and Chain-of-Custody Documentation	
Attac	hments		
	Attachment 1 Attachment 2 Attachment 3	Equivalent Head Elevations Over Time Separate Phase Petroleum Thickness Over Time Groundwater Analytical Results Over Time	

1.0 INTRODUCTION

SAGE Environmental, Inc. (SAGE) presents this status report for environmental services provided at the former S&H Sunoco gasoline service station located at 905 Cranston Street in Cranston, Rhode Island (Site). A Site Location Map identifying the Site on the USGS Providence, Rhode Island Quadrangle Map is included as Figure 1. A Site Plan identifying pertinent Site features is included as Figure 2.

This report summarizes corrective actions associated with the referenced location for the approximate period January 1, 2008 through March 31, 2008. Specific activities for this period included:

- groundwater gauging
- groundwater sampling and analysis
- operations and maintenance site visits

2.0 GROUNDWATER MONITORING

Groundwater gauging and monitoring activities conducted during this reporting period are summarized below.

2.1 Groundwater Gauging

As recommended in SAGE's January 26, 2007 Status Report, and approved by RIDEM in a letter dated February 21, 2007, the gauging frequency of select Site monitor wells was reduced from monthly to quarterly.

Groundwater elevation data were obtained during this reporting period on February 8, 2008 using an ORS electronic oil/water interface probe. Equivalent head elevations calculated from data generated during the gauging event are summarized in **Table 1**. A summary of monitor well gauging data for the gauging event is included as **Appendix A**. A summary of equivalent head data from February 11, 1999 through February 8, 2008 is included as **Attachment 1**.

Monitor well gauging performed during the reporting period indicates that the average depth to groundwater beneath the Site on February 8, 2008 was determined to be approximately 31.6 feet below grade.

<u>Table 1</u>
Equivalent Head Elevations
February 8, 2008

Monitor Well	MP Elevations	Equivalent Head Elevation
ECS-1	WELL	CLOSED
ECS-2	97.69	66.71
ECS-3	WELL	CLOSED
GZ- 1	99.19	NG
GZ-2	WELL	CLOSED
GZ-3	99.34	66.73
MW-I	WELL	CLOSED
MW-2	WELL	CLOSED
MW-3	WELL	CLOSED
MW-4	98.99	66.80
MW-5	WELL	CLOSED
MW-6	97.25	66.74
MW-7	WELL	CLOSED
MW-8	WELL	CLOSED
MW-9	98.60	66.79
MW-10	WELL	CLOSED
MW-11	WELL	CLOSED
MW-12	WELL	CLOSED
VW-I	99.10 ·	NG
VW-2	98.67	_ NG
VW-3	98.56	NG

NG = Not Gauged MP = Measuring Point

2.2 Separate Phase Petroleum Evaluation

No separate phase petroleum (SPP) was identified during this reporting period in Site monitor wells. A summary of SPP identified during previous monitor well gauging events conducted between February 11, 1999 and February 8, 2008 is included as **Attachment 2**. Measurable SPP (SPP thickness equal to or greater than 0.01 feet) was last detected in a Site monitor well during gauging activities performed on May 21, 2002.

2.3 Water Table Elevation Assessment

A hydrogeological investigation is being conducted at the Site in conjunction with the weekly routine monitoring of the soil vapor extraction (SVE) remediation system.

On June 14, 2006, a levelogger was deployed in monitor well MW-4, and a barologger and rain gage were installed at the Site. A levelogger is a pressure-sensitive electronic instrument which, when deployed (submerged and suspended) in a groundwater monitor well, continually measures and records the height of the water column above the instrument. The water column height data are combined with barometric pressure data (recorded by the barologger) and well elevation survey data to yield the local water table elevation. This continuous record of water table elevation provided by the levelogger at the Site is being used in conjunction with the rainfall data to investigate the local water table excursion dynamics, response to storm runoff, and historic level occurrence.

Under normal conditions groundwater levels exhibit cyclical seasonal fluctuations and generally correlate with precipitation. Water level highs usually follow increased precipitation as can be seen in **Figure 3**, which displays daily average levelogger readings and rainfall during the reporting period. Water level increases can be seen after rainfall events on February 13, and March 8, 2008.

Due to the historical presence of separate-phase petroleum (SPP) at the Site, the existence of a vertical "smear zone" is expected, as SPP floating on the water table surface was carried up and down by water table excursions and subsequently was deposited on exposed soils. As such, groundwater contaminant concentrations and SVE influent readings would be expected to exhibit a dependence on the elevation of the water table within the smear zone, with generally higher concentrations and readings during periods of low table and exposed soils within the smear zone. Comparison of the levleogger record from MW-4 to SVE influent concentrations since June of 2006 indicates that the highest influent SVE concentrations generally occurred shortly after a decline in the water table.

During this reporting period, levelogger data recorded in MW-4 (Figure 4) indicates that the water level has risen approximately 0.6 feet. During the same period, SVE system influent concentrations increased from 3 ppm to 115 ppm, indicating that the SVE system is still effectively removing VOCs from subsurface soils.

Continued levelogger deployment is recommended to ensure that SVE system decommissioning is not considered until a low water table condition is encountered and potential rebound is investigated.

2.4 Groundwater Sampling and Analysis

Groundwater samples were obtained on February 8, 2008 from select Site monitor wells (MW-4, MW-9, ECS-2, and GZ-3). Well GZ-1 was not sampled because a car was parked over it preventing access. Prior to sampling, monitor wells were purged of a minimum of three well volumes of water. Samples were collected using dedicated, disposable bailers and were placed in analyte-specific containers. Following sample collection, the samples were placed in a cooler with ice and were transported to a Rhode Island-certified laboratory under Chain-of-Custody documentation for analysis of benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl tert-butyl ether (MTBE) via EPA Method 8021B. Analytical results for groundwater samples collected on February 8, 2008 are summarized in **Table 2**. Analytical results for groundwater samples collected from Site monitor wells between May 17, 1999 and February 8, 2008 are summarized in **Attachment 3**. Certificates of Analyses and Chain-of-Custody documentation for the February 8, 2008 groundwater-sampling event are included in **Appendix B**.

Table 2 Groundwater Analytical Results February 8, 2008

Sample / Date	41111	Concer	ntration		RIDEM	RIDEM GB
Analyte	MW-4 2/8/2008	MW-9 2/8/2008	ECS-2 2/8/2008	GZ-3 2/8/2008	Method 1 Objective GB Groundwater	Groundwater UCL
Volatiles, Purgeable Aromatics	by 8021B (u	ıg/L):		- 1955年	以及考虑性的	
Benzene	46	93	28	190 ^b	140	18000
Ethylbenzene	790	14	580	1600	1600	16000
Methyl tert-butyl ether (MTBE)	47	42	22	<100	5000	NE
Toluene	410	1.1	1200	3800 ^b	1700	21000
Xylenes (total)	3400	4	4600	14000	NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

NE: No allowable limit is established for the substance

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x)

Sample Results:

b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives

According to the Rhode Island Department of Environmental Management (RIDEM) Groundwater Classification Map, the Site lies within an area designated as GB. A GB Groundwater Classification is defined as those groundwater resources that have been designated as not suitable for public or private drinking water use without prior treatment.

Groundwater samples collected on February 8, 2008 identified exceedances of RIDEM Method 1 GB Groundwater Objectives for petroleum related compounds (i.e., BTEX and/or MTBE) in sample collected from monitor well GZ-3. Laboratory analysis of the groundwater samples collected from the remaining monitor wells sampled during this reporting period (MW-4, MW-9, and ECS-3) indicates that these wells were compliant with RIDEM Method 1 GB Groundwater Objectives for BTEX and MTBE at the time sampled.

2.5 Evaluation of Current Site Conditions

A summary of SPP measurements obtained during monitor well gauging events conducted between February 11, 1999 and February 8, 2008 is included as **Attachment 2**. During each gauging event, depth to product (where present) and depth to water were gauged in Site monitor wells using an electronic oil/water interface probe. Locations of Site monitor wells are depicted on **Figure 2**. Gauging data indicates that SPP with a measured thickness of greater than 0.01 feet has not been observed in a Site monitor well since May 21, 2002. On May 21, 2002, SPP with a measured thickness of 0.01 feet was observed in monitor well GZ-3.

Gauging data indicates that sporadic occurrences of SPP with a thickness of equal to or greater than 0.01 feet were observed in monitor wells MW-1, MW-2 MW-3, MW-4, ECS-1, ECS-2, GZ-1, GZ-2 and GZ-3 between February 11, 1999 and May 21, 2002. No occurrences of SPP with measured thicknesses of equal to or greater than 0.01 feet have been observed in the remaining Site monitor wells (MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11 or MW-12). Based on gauging data collected, SPP occurrences were limited to on-Site monitor wells. A summary of maximum SPP thicknesses recorded in monitor wells MW-1, MW-2, MW-3, MW-4, ECS-1, ECS-2, GZ-1, GZ-2 and GZ-3 between February 11, 1999 and May 21, 2002 is included in **Table 3**.

Table 3
Summary of Maximum SPP Occurrences

Monitor Well	Maximum SPP Thickness Detected	Date of Maximum SPP Occurrence
MW-1	3.45 feet	10/27/99
MW-2	0.01 feet	8/12/99
MW-3	0.02 feet	8/12 and 9/24/99
MW-4	1.36 feet	2/13/02
ECS-1	0.43 feet	2/13/02
ECS-2	0.68 feet	5/17/99
GZ-1	0.10 feet	2/17/00
GZ-2	0.60 feet*	12/26/00
GZ-3	0.30 feet	11/15/00

^{*} Thickness estimated from product removed in first bailer lowered into monitor well.

Based on monthly monitor well gauging activities performed since May 21, 2002, and quarterly monitor well gauging activities performed since January 2007, it appears that occurrences of SPP at the Site have been eliminated through a combination of manual product recovery efforts and removal via the SVE system operating at the Site.

Data for quarterly sampling performed of Site monitor wells on February 8, 2008 indicate that exceedances of RIDEM Method 1 GB Groundwater Objectives have been similar to recent quarterly sampling events. A summary of quarterly groundwater monitoring results for samples collected between May 17, 1999 and February 8, 2008 is included as **Attachment 3**. In general, recent analytical results for benzene and MTBE have exhibited a continuous decline in concentrations and similar patterns have also been observed for ethylbenzene, toluene and total xylenes. Based on results for the previous year of quarterly groundwater sampling (February 2007 through February 2008), exceedances of RIDEM Method 1 GB Groundwater Objectives were limited to monitor wells MW-9, ECS-2, GZ-1, and GZ-3.

3.0 SOIL VAPOR EXTRACTION SYSTEM MONITORING

The SVE system operated continuously since the previous reporting period using a two blower carbon drum system. During the start of the operational period of SVE Blower #1, the system vented from vent well VW-3, while SVE Blower #2 vented from vent well VW-1 and vent lateral-2, located within the tank field. On March 12, 2008, vapor point data was collected for system realignment and optimization. Based on the vapor point data, both blowers were connected to vent lateral-2, located within the tank field on March 14, 2008. The effluent vapors from each blower were treated with vapor phase carbon prior to release. Readings obtained during monitoring of the two blower SVE system, including photoionization detector (PID) screening results of the influent and effluent, are summarized in **Table 4**.

Table 4
Vapor Phase Carbon System Inspection Summary
January through March 2008

Vapor Phase Carbon System												
		PI	D Screening	g Results (p)	pm)							
Date	Inspected By		Blower np 1)	VW-1, VL-2 Blower (Pump 2)								
		Influent	Effluent	Influent	Effluent							
1/4/2008	BA	ND	ND	3	14							
1/11/2008	FM	ND	ND	8	2.8							
1/18/2008	FM	ND	ND	5	ND							
1/25/2008	FM	ND	ND	2	ND							
2/1/2008	FM	ND	ND	41	ND							
2/8/2008	FM/BF	ND	ND	1.8	2.6							
2/15/2008	FM	ND	ND	5	ND							
2/22/2008	FM	ND	ND	49	ND							
2/29/2008	BF	ND	ND	10.2	ND							
3/7/2008	TS	ND	ND	115	51							
3/14/2008	FM	ND	ND	36	ND							
3/21/2008	FM	10	ND	42	10							
3/28/2008	FM	17	ND	63	ND							

PID - Photoionization detector

ND – not detected ppm - parts per million

PID screening of SVE Blower #1 revealed detections of total photoionizable compounds ranging from ND ppm to 17 ppm. PID screening of SVE Blower #2 observed concentrations of total photoionizable compounds ranging from ND ppm to 47 ppm. Spent carbon drums were changed out on System #2 on February 15 and March 14, 2008.

4.0 FINDINGS AND CONCLUSIONS

A summary of findings for activities conducted during the approximate period of January 1, 2008 through March 31, 2008 is presented below.

Monitor well gauging performed during the reporting period indicated that the average depth to groundwater beneath the Site during the reporting period was determined to be approximately 31.6 feet below grade.

No SPP was observed in Site monitor wells during this reporting period. As such, no measurable SPP was recovered via manual bailing of Site monitor wells. It should be noted that measurable SPP (SPP thickness equal to or greater than 0.01 feet) was last detected in a Site monitor well on May 21, 2002. Based on monthly monitor well gauging activities performed since May 21, 2002, and quarterly monitor well gauging since January 2007, it appears that occurrences of SPP at the Site have been eliminated through a combination of manual product recovery efforts and removal via the SVE system operating at the Site.

Groundwater samples collected on February 8, 2008 identified exceedances of RIDEM Method 1 GB Groundwater Objectives for petroleum related compounds benzene and toluene in the groundwater sample collected from monitor well GZ-3. Laboratory analysis of the groundwater samples collected from monitor wells MW-4, MW-9, and ECS-2 indicates that these wells were compliant with RIDEM Method 1 GB Groundwater Objectives for BTEX and MTBE at the time sampled. Well GZ-1 was not accessible for sampling due to a parked car.

Based on a comparison of analytical data for groundwater samples collected during the reporting period and historical analytical results since May 17, 1999, a significant downward trend continues to be observed in concentrations of BTEX and MTBE in groundwater beneath the Site. Analytical results for quarterly groundwater monitoring conducted between February 2007 and February 2008 indicate that exceedances of RIDEM Method 1 GB Groundwater Objectives are currently limited to monitor wells MW-9, ECS-2, GZ-1, and GZ-3.

The SVE system has operated continuously since the previous reporting period using a two blower carbon drum system. During the start of the operational period of SVE Blower #1, the system vented from vent well VW-3, while SVE Blower #2 vented from vent well VW-1 and vent lateral-2, located within the tank field. On March 12, 2008, vapor point data was collected for system realignment and optimization. Based on the vapor point data, both blowers were connected to vent lateral-2, located within the tank field on March 14, 2008. Weekly PID screening of SVE Blower #1 revealed detections of total photoionizable compounds ranging from ND ppm to 17 ppm. PID screening of SVE Blower #2 observed concentrations of total photoionizable compounds ranging from ND ppm to 47 ppm.

Results of monitoring activities conducted at the Site during this reporting period indicate that exceedances of RIDEM Method 1 GB Groundwater Objectives persist in groundwater beneath the Site. However, in general, an overall downward trend in concentrations of total BTEX and MTBE has been observed in groundwater based on historical analytical results for groundwater samples collected since May 1999.

5.0 RECOMMENDATIONS

Based on the results of data generated during the reporting period and an evaluation of current Site conditions, *SAGE* recommends the following:

- Continued quarterly groundwater monitoring of monitor wells MW-4, MW-9, ECS-2, GZ-1 and GZ-3;
- Conduct annual groundwater monitoring for monitor well MW-6.

S & H SUNOCO CRANSTON STREET, CRANSTON, RHODE ISLAND

Instrument	ORS Interface	Probe			Sage Job #	R016
Checked By					Date:	2/8/2008
Gauged By	FM/BF				M.P. Elevation	ons : 5/8/06
Well #	MP Elev (pvc)	Depth to Product	Depth to Water	Product Thickness	Product Bailed	Equivalent HD Elev.
ECS-1			WELL	CLOSED		
ECS-2	97.69	_	30.98	0.00	_	66.71
ECS-3			WELL	CLOSED	•	•
GZ-1	99.19	NG	NG	NG	_	NG
GZ-2			WELL	CLOSED	•	•
GZ-3	99.34	_	32.61	0.00		66.73
MW-1			WELL	CLOSED		•
MW-2			WELL	CLOSED		
MW-3			WELL	CLOSED		
MW-4	98.99	_	32.19	0.00	T -	66.80
MW-5			WELL	CLOSED	•	•
MW-6	97.25	_	30.51	0.00	_	66.74
MW-7			WELL	CLOSED		
MW-8			WELL	CLOSED		
MW-9	98.60	_	31.81	0.00	_	66.79
MW-10			WELL	CLOSED	•	
MW-11			WELL	CLOSED		
MW-12			WELL	CLOSED		
VW-1	99.10	NG	NG	NG	NG	NG
VW-2	98.67	NG	NG	NG	NG	NG
VW-3	98.56	NG	NG	NG	NG	NG

COMMENTS:

MW-10, 11 and 12 are 1.25" monitor wells, remaining monitor wells are 2"

- = No separate-phase petroleum identified

N.G. = Not gauged

Specific gravity of petroleum assumed = 0.75

MW-1, MW-2, MW-3, MW-5, MW-7, MW-8, MW-10, MW-11, MW-12, ECS-1, ECS-3 and GZ-2 closed on 10/25/06

31 Louisa Viens Drive Dayville, CT 06241 FAX: 860-774-2689 860-774-6814 800-932-1150

ANALYTICAL DATA REPORT

Report Number: E802590 Project: R016

prepared for:

Sage Environmental, Inc. 172 Armistice Blvd. Pawtucket, RI 02860

Attn: Brian Koch

Received Date: 2/11/2008 Report Date: 2/15/2008

Robert Sturiesm

Premier Laboratory, LLC Authorized Signature

Certifications: CT (PH-0465), MA (M-CT008), ME (CT050), NH (2020), NJ (CT002), NY (11549), RI (RI246) 61 Louisa Viens Drive Dayville, CT 06241 FAX: 860-774-2689 860-774-6814 800-932-1150

Report No: E802590

Client: Sage Environmental, Inc

Project: R016

CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

Premier Laboratory, Inc received four samples from Sage Environmental, Inc on 02/11/2008. The samples were analyzed from the following list of analyses:

Volatiles, Purgeable Aromatics by 8021B in GW/SW 8021

Variances:

SDG:

None reported.

Method:

None reported.

QA/QC:

Sample 2, MW-9, Volatiles, Purgeable Aromatics by 8021B: One surrogate spike was outside quality control limits for the sample, due to matrix interference. The sample was re-extracted and re-analyzed and the surrogate was still outside control limits.

Laboratory: Premier Laboratory, Inc

PL Report No: E802590

PL Sample No: 1

Date Collected: 2/8/2008 Date Received: 2/11/2008 Date Extracted:

Date Analyzed: 02/14/08 By: ALB Method: 8021

QC Batch#: 59554

Units: ug/L

Customer: Sage Environmental, Inc.

Location: Cranston, RI

Project: R016

Sample Description: MW-4

Matrix: Aqueous Percent Moisture: N/A Sample Weight/Volume: Dilution Factor: 16 Soil Extract Volume:

Lab Data File: 2021408.D

CAS No.	Parameter	Result	DL
71-43-2	Benz <i>e</i> ne	46	16
100-41-4	Ethylbenzene	790	16
1634-04-4	Methyl tert-butyl ether (MTBE)	47	16
108-88-3	Toluene	410	16
1330-20-7	Xylenes (total)	3400	16
Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	96%	74%-131%	
Fluorobenzene #2	76%	63%-122%	
Trifluorotoluene #2	103%	72%-126%	

Laboratory: Premier Laboratory, Inc.

PL Report No: E802590

PL Sample No: 2

Date Collected: 2/8/2008
Date Received: 2/11/2008
Date Extracted:

Date Analyzed: 02/13/08 By: ALB

Method: 8021 QC Batch#: 59537 Units: ug/L Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: MW-9

Matrix: Aqueous
Percent Moisture: N/A
Sample Weight/Volume:
Dilution Factor: 1
Soil Extract Volume:

Lab Data File: 2021311.D

CAS No.	Parameter	Result	ÐL
71-43-2	Benzene	93	1.0
100-41-4	Ethylbenzene	14	1.0
1634-04-4	Methyl tert-butyl ether (MTBE)	42	1.0
108-88-3	Toluene	1.1	1.0
1330-20-7	Xylenes (total)	4.0	1.0
Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	102%	74%-131%	

4-Bromochlorobenzene #2 102% 74%-131%
Fluorobenzene #2 131% 63%-122%
Trifluorotoluene #2 118% 72%-126%

Laboratory: Premier Laboratory, Inc

PL Report No: E802590

PL Sample No: 3

Date Collected: 2/8/2008
Date Received: 2/11/2008
Date Extracted: By:

Date Analyzed: 02/13/08 By: ALB

Method: 8021 QC Batch#: 59537 Units: ug/L Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: ECS-2

Matrix: Aqueous
Percent Moisture: N/A
Sample Weight/Volume:
Dilution Factor: 20
Soil Extract Volume:
Lab Data File: 2021315.D

CAS No.	Parameter	Result	DL
71-43-2	Benzene	28	20
100-41-4	Ethylbenzene	580	20
1634-04-4	Methyl tert-butyl ether (MTBE)	22	20
108-88-3	Toluene	1200	20
1330-20-7	Xylenes (total)	4600	20
Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	98%	74%-131%	

4-Bromochlorobenzene #2 98% 74%-131%
Fluorobenzene #2 91% 63%-122%
Trifluorotoluene #2 99% 72%-126%

Laboratory: Premier Laboratory, Inc.

PL Report No: E802590

PL Sample No: 4

Date Collected: 2/8/2008 Date Received: 2/11/2008 Date Extracted:

Date Analyzed: 02/14/08 By: ALB

Method: 8021 QC Batch#: 59554 Units: ug/L Customer: Sage Environmental, Inc

Location: Cranston, RI

Project: R016

Sample Description: GZ-1

Matrix: Aqueous
Percent Moisture: N/A
Sample Weight/Volume:
Dilution Factor: 100
Soil Extract Volume:

Lab Data File: 2021407.D

CAS No.	Parameter	Result	DL
71-43-2	Benzene	190	100
100-41-4	Ethylbenzene	1600	100
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	100
108-88-3	Toluene	3800	100
1330-20-7	Xylenes (total)	14000	100
Surrogate	Recovery	Limits	
4-Bromochlorobenzene #2	118%	74%-131%	
Fluorobenzene #2	73%	63%-122%	
Trifluorotoluene #2	89%	72%-126%	

Premier Laboratory, LC CHAIN OF CUSTODY

www.PremierLaboratory.com

SHADED AREAS FOR LAB **USE ONLY**

Project Manager ,

COPY OF REPORT TO		BILLING INFORMATION								PROJECT INFORMATION									
ATTENTION: SAGE Environmental, In Pawtucket, RI 02860		BILL TO: SAGE Environmental, Inc. 172 Armistice Blvd. Pawtucket, Ri 02860 ATTENTION: TELEPHONE: PURCHASE ORDER #: RULL							- F - P - 0	PROJECT: RCIL PROJECT LOCATION: CITY STATE: RI PROJECT MANAGER: Brian Lich In case we have any questions when samples arrive we should call: E-MAIL: Same									
E-MAIL: SOGRO SCORENVION MENTO PHONE: 723 CCCC FAX: 723 C	<u>iner</u> 1973	TELEP	HONE:		#. K	Palla			_ T	ELEPI AX: _	HONE		•	4					-
SAMPLE IDENTIFICATION	DATE	L	SAMPLE		SAMPLE MATRIX	22	BOLLA	*/ /			NALY		7	//		7	11	ESERVI	ATIVES
mw-4	2/8/08	12 <i>t</i> e	\ <u> </u>	ΧŢ	AG	2	又			 							17		\ \ \ \ \
mw9		1050		X		Z	X										7		
ECS-2		1115		X		2	X										14		
67-1		1130		X		2	X										7		
(१८३-	W			X	<u> </u>	- 2	X			<u> </u>							-14	<u>-</u>	
	<u> </u>											Ī							
										<u> </u>									
CUSTODY TRANSFER			DATE -か-0お	+	OU	TURNARO	-				-		_		HAR	D CO	PY	E-I	MAJL
SAMPLER: Druk M.			0-08	+- '		EXPEDITI COMMEN	:D SER TS	BTEX	BE SUI	LTB	E 0	NCHA NCHA	HGE { }						
RELINQUISHED: Cutty Laine		۷	11/08	10.	:55										_				
RECEIVED:			11/09		-رخ														
RELINQUISHED:		\2/	N08	1/2	OY:	CONDITIO	ONS UP	ON RECE	IPT: (Ch	eck On	0)	12							
RECEIVED:		9	11108		40			Cooled		Amblent		1.0		Upon A			ıb		
1			SEE RE	VERSE	SIDE FOR	TERMS A	ND CO	NDITIONS	i			PAC	3E		ot	<u>. </u>	_		

.

·

•

.

Equivalent Head Elevations Over Time February through December 1999

Monitor Well	MP	2/11/99	3/5/99	4/9/99	5/17/99	6/9/99	7/7/99	8/12/99	9/24/99	10/27/99	11/8/99	11/17/99	12/20/99
	Elevations												
ECS-1	96.50	66.15	66.17	66.62	65.99	NG	NG	64.71	65.15	65.08	65.16	NG	64.84
ECS-2	97.88	66.16	65.94	66.54	65.86	65.78	65.31	64.67	65.11	65.05	65.09	NG	64.82
ECS-3	NG	DRY	NG	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
GZ-1	99.29	66.10	66.23	NG	65.92	65.83	65.36	64.73	65.13	NG	NG	65.07	64.79
GZ-2	97.39	66.08	66.25	66.55	65.93	65.84	65.35	64.72	65.13	NG	65.17	NG	64.84
GZ-3	99.43	66.06	66.22	66.53	65.92	65.79	65.34	64.72	65.11	NG	65.16	NG	64.84
MW-1	98.53	66.07	66.23	66.52	65.89	65.82	65.34	64.71	65.11	64.24	65.16	NG	64.81
MW-2	98.57	66.09	66.25	66.54	65.93	65.83	65.35	64.73	65.14	65.08	65.20	NG	64.84
MW-3	98.01	66.05	66.91	66.55	65.93	65.79	65.35	64.73	65.13	65.13	NG	NG	64.82
MW-4	98.99	66.08	61.23	66.53	65.91	65.81	65.33	64.70	65.10	65.03	NG	65.05	64.80
MW-5	95.28	NE	NE	NE	66.58	66.45	66.04	65.41	65.56	65.66	65.78	NG	65.49
MW-6	97.25	NE	NE	NE	65.88	65.78	65.29	64.66	65.06	65.36	65.11	NG	64.77
MW-7	96.89	NE	NE	NE	65.88	65.78	65.28	64.67	65.08	65.00	65.13	NG	64.78
MW-8	99.31	NE	NE	NE	65.89	65.8	65.32	64.69	65.10	65.03	65.15	NG	64.80
MW-9	98.60	NE	NE	NE	65.95	65.84	65.35	64.74	65.14	65.07	64.17	NG	64.84
VW-1	99.10	NE	NE	NE	NG	NG	65.08	NG	65.01	64.97	NG	65.08	DRY

NG = Not Gauged

NE = Non Existing (Monitor wells MW-5 through MW-9 and vent well VW-1 were installed on April 28 and 29, 1999.)

Equivalent Head Elevations Over Time January through December 2000

Monitor Well	MP Elevations	1/19/00	2/17/00	3/21/00	4/26/00	5/30/00	6/27/00	7/24/00	8/9/00	9/14/00	10/23/00	11/15/00	12/26/00
ECS-1	96.50	64.96	65.02	65.39	66.11	66.45	NG	65.83	65.58	NG	64.65	64.57	64.93
ECS-2	97.88	64.93	65.00	65.31	66.05	66.36	66.35	65.76	65.54	64.98	64.56	64.53	65.31
ECS-3	NG	DRY	DRY	DRY	NG	NG	DRY	NG	NG	DRY	DRY	DRY	DRY
GZ-1	99.29	64.98	64.99	65.35	66.05	66.36	66.35	65.76	65.54	65.76	64.63	64.54	64.92
GZ-2	97.39	62.92	65.00	65.37	66.05	66.37	66.36	65.77	65.55	65.07	64.65	64.57	NG
GZ-3	99.43	67.00	65.01	65.37	66.05	66.36	66.35	65.77	65.54	65.13	64.65	64.76	NG
MW-1	98.53	64.94	65.01	65.36	NG	NG	66.36	65.79	65.53	65.08	64.64	64.56	NG
MW-2	98.57	64.98	65.02	65.38	66.08	66.38	66.36	65.79	65.56	66.09	64.68	64.62	64.96
MW-3	98.01	64.98	65.01	65.37	66.06	66.37	66.36	65.78	65.56	65.57	64.66	64.58	64.94
MW-4	98.99	64.93	65.00	65.38	66.09	66.40	66.35	65.76	65.55	65.07	64.66	64.58	64.92
MW-5	95.28	65.58	65.64	66.04	66.70	67.03	67.03	66.46	66.19	65.76	65.30	65.12	65.47
MW-6	97.25	64.92	64.95	65.33	66.00	66.31	66.30	65.72	65.49	65.02	64.59	64.51	64.88
MW-7	96.89	64.92	64.96	65.34	66.03	66.32	66.30	65.72	65.50	65.02	64.62	64.53	64.91
MW-8	99.31	64.94	64.98	65.36	66.04	66.33	66.31	65.74	65.52	65.04	64.62	64.56	64.92
MW-9	98.60	64.98	67.02	NG	66.09	66.38	66.36	65.78	65.57	65.09	64.68	64.50	64.96
VW-1	99.10	NG	NG	NG	NG	NG	66.52	NG	NG	NG	NG	NG	NG

Equivalent Head Elevations Over Time January 2001 through December 2001

Monitor	MP	1/24/01	2/28/01	3/27/01	4/19/01	5/2/01	6/8//01	7/17/01	8/16/01	8/30/01	9/26/01	10/26/01	11/28/01	12/31/01
Well	Elevations													
ECS-1	96.50	64.90	65.19	66.01	67.16	67.09	66.83	66.70	NG	65.91	65.42	64.91	64.39	63.68
ECS-2	97.88	64.85	65.11	65.92	67.04	66.99	66.77	66.60	65.99	NG	65.36	64.85	64.35	64.09
ECS-3		DRY	DRY	DRY	DRY	DRY				De	stroyed			
GZ-1	99.29	64.89	65.11	65.94	67.03	66.97	66.76	66.59	65.99	NG	65.36	64.87	64.35	64.07
GZ-2	97.39	64.90	65.13	65.98	67.05	66.98	66.75	66.60	66.01	NG	65.37	64.88	64.37	63.90
GZ-3	99.43	64.90	65.13	65.96	67.02	66.97	66.76	NG	NG	65.82	65.37	NG	64.35	64.12
MW-1	98.53	NG	64.23	64.97	67.04	66.96	66.78	66.59	66.03	NG	65.38	64.90	64.21	64.03
MW-2	98.57	64.96	65.15	66.02	67.04	66.98	66.78	66.62	66.02	NG	65.40	64.90	64.37	64.12
MW-3	98.01	64.98	65.15	65.95	67.10	66.99	66.77	66.63	66.02	NG	65.39	64.89	64.35	64.12
MW-4	98.99	64.95	65.14	66.97	67.01	66.97	66.76	66.59	66.01	NG	65.38	64.88	64.38	64.40
MW-5	95.28	65.66	65.92	66.73	67.75	67.67	67.28	67.19	66.58	NG	65.97	65.48	64.97	64.63
MW-6	97.25	64.87	65.08	65.90	66.99	66.93	66.71	66.54	65.97	NG	65.33	64.82	64.31	64.04
MW-7	96.89	64.87	65.08	65.92	66.97	66.91	65.09	66.53	65.96	NG	65.32	64.83	64.32	64.06
MW-8	99.31	64.90	65.10	65.94	66.99	66.93	66.74	66.56	65.98	NG	65.34	64.85	64.33	64.08
MW-9	98.60	64.93	65.14	65.99	67.04	66.98	66.78	66.62	66.03	NG	65.39	64.90	64.39	64.12

Equivalent Head Elevations Over Time January 2002 through December 2002

Monitor Well	MP Elevations	1/30/02	2/13/02	3/14/02	4/5/02*	4/18/02	4/25/02*	5/21/02	6/21/02	7/23/02	8/9/02	9/20/02	10/17/02	11/14/02	12/13/02
ECS-1	96.50	63.62	63.91	64.05	64.38	64.46	64.42	64.81	65.00	64.56	64.38	64.23	64.34	64.40	65.12
ECS-2	97.88	63.63	63.94	64.03		64.43		64.77	64.97	64.53	64.36	64.21	64.31	64.40	65.09
ECS-3								Dest	royed						
GZ-1	99.29	63.96	63.91	64.03		64.44		64.76	64.96	64.53	64.34	64.20	64.32	64.37	65.07
GZ-2	97.39	63.97	63.90	64.07	64.33	64.47	64.42	64.79	64.99	64.55	64.35	64.21	64.31	62.39	65.09
GZ-3	99.43	63.92	63.93	64.04		64.45		64.79	64.98	64.53	64.32	64.19	64.31	64.38	65.09
MW-1	98.53	64.03	63.94	64.05		NG		64.84	NG	NG	64.38	64.24	64.36	64.46	65.09
MW-2	98.57	64.01	63.96	64.08		64.45		64.83	65.00	64.56	64.35	64.23	64.35	64.43	65.00
MW-3	98.01	64.00	63.96	64.05		64.46		64.80	64.97	64.57	64.38	64.22	64.33	64.42	65.11
MW-4	98.99	64.01	63.83	63.98	64.37	64.49	64.38	64.82	64.99	64.59	64.40	64.25	64.37	64.44	65.13
MW-5	95.28	64.51	64.51	64.63		65.22		65.44	65.82	65.42	65.16	64.76	64.99	65.09	65.91
MW-6	97.25	63.94	63.89	63.97		64.40		64.74	64.91	64.50	64.30	64.15	64.26	64.35	65.05
MW-7	96.89	63.95	63.90	64.01		64.41		64.77	64.91	64.49	64.29	64.18	64.29	64.37	65.05
MW-8	99.31	63.97	63.91	64.03		64.42		64.78	64.98	64.51	64.33	64.20	64.31	64.39	65.06
MW-9	98.60	64.01	63.95	64.06		64.48		64.83	64.99	64.56	64.37	64.23	64.34	64.44	65.11
MW-10	100.06	63.95	63.89	63.99		64.41		64.79	64.94	64.50	64.30	64.17	64.30	64.38	65.05
MW-11	100.53	63.92	63.90	64.02		64.40		64.78	64.92	64.49	64.30	64.18	64.30	64.38	65.04
MW-12	100.18	64.03	63.97	64.10		66.91		64.85	64.99	64.56	64.38	64.26	64.36	64.45	65.13

^{*} Indicates a limited gauging event due to the presence of SPP in these wells.

Equivalent Head Elevations Over Time January 2003 through December 2003

Monitor Well	MP Elevations	1/14/03	2/6/03	3/24/03	4/16/03	5/9/03	6/12/03	7/11/03	8/27/03	9/26/03	10/21/03	11/5/03	12/9/03
ECS-1	96.50	67.40	65.88	66.30	66.79	67.13	67.08	67.22	67.01	65.11	66.25	66.35	65.96
					66.72		67.00						
ECS-2	97.88	66.04	65.79	66.23	00.72	67.02		67.14	66.93	66.95	66.19	66.28	65.89
ECS-3							De	stroyed					
GZ-1	99.29	66.02	65.76	67.21	66.71	67.00	66.98	67.11	66.89	66.47	66.17	66.27	65.88
GZ-2	97.39	66.06	65.79	66.24	66.76	67.04	67.00	67.14	66.93	66.49	66.22	66.29	65.91
GZ-3	99.43	66.02	65.77	66.22	66.72	67.01	66.99	67.11	66.92	66.47	66.17	66.28	65.90
MW-1	98.53	66.04	65.82	66.26	66.71	67.01	67.14	73.50	66.95	66.51	65.90	NG	NG
MW-2	98.57	66.06	65.80	66.26	66.77	67.03	67.08	67.92	66.97	66.51	66.23	66.87	65.92
MW-3	98.01	66.05	65.79	66.26	66.75	67.04	67.02	67.15	66.96	66.52	66.22	66.31	65.93
MW-4	98.99	66.05	65.81	66.26	66.77	67.03	67.01	67.16	66.94	66.49	66.21	66.29	65.92
MW-5	95.28	66.79	66.58	66.86	67.31	67.67	67.54	67.70	67.48	67.07	66.73	66.78	66.52
MW-6	97.25	65.99	65.75	66.20	66.71	67.00	66.96	67.12	66.91	66.45	66.15	66.25	65.88
MW-7	96.89	65.99	65.73	66.18	66.72	66.96	66.93	67.07	66.86	66.41	66.14	66.24	65.85
MW-8	99.31	66.00	65.75	66.20	66.72	66.97	66.95	67.09	66.90	66.46	66.16	66.21	65.86
MW-9	98.60	66.04	65.79	66.24	66.76	67.03	66.99	67.14	66.94	66.49	66.20	66.29	65.91
MW-10	100.06	65.98	65.67	66.17	66.70	66.96	66.94	67.05	66.89	66.44	66.15	66.25	65.84
MW-11	100.53	65.98	65.71	66.16	66.67	66.95	66.92	67.04	66.88	66.42	66.14	66.23	65.83
MW-12	100.18	66.05	65.79	66.24	66.77	69.02	67.01	67.12	66.94	66.49	66.20	66.28	65.92

Equivalent Head Elevations Over Time January through December 2004

Monitor Well	MP Elevations	1/13/04	2/16/04	3/24/04	4/12/04	5/19/04	6/30/04	7/21/04	8/25/04	9/17/04	10/6/04	11/17/04	12/24/04
ECS-1	96.50	66.86	66.86	NG	66.41	67.09	66.487	66.16	66.11	65.78	66.14	65.73	66.28
ECS-2	97.88	NG	NG	65.94	66.37	66.99	66.42	66.12	66.07	65.73	66.08	65.68	66.25
ECS-3							Dest	royed					
GZ-1	99.29	66.78	66.41	65.90	66.36	66.95	66.38	66.09	66.03	65.72	66.04	65.67	66.20
GZ-2	97.39	66.77	66.95	65.96	66.39	67.03	66.42	66.13	66.09	65.78	66.09	65.72	66.28
GZ-3	99.43	66.79	66.43	65.91	66.38	66.97	66.39	66.11	66.07	65.75	66.07	65.68	67.23
MW-1	98.53	96.81	66.48	65.97	66.42	66.99	66.42	66.17	66.11	65.77	66.09	65.71	66.28
MW-2	98.57	67.06	66.49	65.97	66.49	67.15	66.43	66.16	66.11	65.78	66.11	65.73	66.32
MW-3	98.01	66.82	66.49	65.96	66.40	67.00	66.42	66.15	66.09	65.77	66.10	65.71	66.26
MW-4	98.99	66.83	66.48	65.97	66.40	67.03	66.42	66.13	66.10	66.77	66.11	65.71	66.28
MW-5	95.28	67.44	67.02	66.45	66.83	67.60	66.96	66.62	66.49	66.26	66.56	66.22	66.73
MW-6	97.25	66.76	66.41	65.91	66.34	66.95	66.36	66.09	66.03	65.71	66.05	65.66	66.20
MW-7	96.89	66.74	66.42	65.89	66.34	66.91	66.34	66.08	66.03	62.70	66.04	65.67	66.21
MW-8	99.31	66.76	66.42	65.90	66.36	66.96	66.37	66.08	66.03	65.72	66.05	65.66	66.26
MW-9	98.60	66.81	66.45	65.96	66.39	67.00	66.41	66.13	66.07	65.74	66.09	65.69	66.26
MW-10	100.06	66.73	66.40	65.89	66.34	66.93	66.36	66.07	66.02	65.71	66.05	65.65	66.22
MW-11	100.53	66.73	66.44	65.87	66.33	66.91	66.34	66.05	66.01	65.68	66.03	65.62	66.20
MW-12	100.18	66.80	66.46	65.95	66.40	66.98	66.42	66.13	66.09	65.77	66.13	65.72	66.28

Equivalent Head Elevations Over Time January through December 2005

Monitor Well	MP Elevations	1/11/05	2/1/05	3/18/05	4/22/05	5/13/05	6/17/05	7/15/05	8/29/05	9/16/05	10/31/05	11/28/05	12/21/05
ECS-1	96.50	66.28	NG	67.15	NG	NG	67.47	66.79	65.90	66.09	67.79	67.76	67.83
ECS-2	97.88	66.25	66.97	67.06	68.06	30.91	67.39	66.76	65.86	66.08	67.74	67.68	67.80
ECS-3		·					Destro	yed					
GZ-1	99.29	66.20	NG	67.03	NG	NG	NG	NG	NG	NG	67.71	67.66	67.76
GZ-2	97.39	66.28	66.95	67.08	68.05	67.96	67.40	66.74	65.86	66.15	67.76	67.72	67.76
GZ-3	99.43	67.23	67.28	67.07	68.01	67.91	67.35	66.69	65.83	65.98	NG	NG	NG
MW-1	98.53	66.28	66.97	67.07	68.04	67.92	67.40	66.74	65.88	65.98	67.8	67.74	67.81
MW-2	98.57	66.32	66.98	67.09	68.07	67.94	67.42	66.78	65.90	66.02	67.82	67.77	67.81
MW-3	98.01	66.26	67.00	67.08	68.05	67.95	67.41	66.77	65.88	74.96	67.8	67.77	67.83
MW-4	98.99	66.28	66.97	66.07	68.05	67.97	67.44	66.78	65.88	65.99	67.69	67.75	67.77
MW-5	95.28	66.73	67.55	67.59	68.64	68.88	67.89	67.23	66.35	66.26	68.16	68.18	68.28
MW-6	97.25	66.20	66.94	67.04	68.03	67.91	67.35	66.71	65.82	65.90	67.75	67.71	67.8
MW-7	96.89	66.21	66.84	67.00	67.96	67.89	67.34	66.70	65.81	65.94	67.75	67.69	67.77
MW-8	99.31	66.26	66.92	67.01	67.98	67.90	67.35	66.70	65.82	65.92	67.76	67.69	67.76
MW-9	98.60	66.26	66.95	67.06	68.02	67.91	67.40	66.74	65.86	65.99	67.79	67.71	67.79
MW-10	100.06	66.22	NG	67.02	67.96	67.87	67.35	66.71	65.82	65.88	67.74	67.66	67.75
MW-11	100.53	66.20	66.86	67.01	67.94	67.85	67.32	66.68	65.80	65.89	67.7	67.65	67.73
MW-12	100.18	66.28	66.97	67.09	68.03	67.93	67.39	66.76	65.88	66.03	67.79	67.74	67.81

Equivalent Head Elevations Over Time January through December 2006

Monitor Well	MP Elevations	1/27/06	2/20/06	3/31/06	4/21/06	5/8/06	6/23/06	7/28/06	8/18/06	10/19/06	11/9/06
ECS-1	96.29	NG	NG	67.45	67.04	66.90	NG	68.17	67.50	66.54	NG
ECS-2	97.69	68.01	68.25	67.37	66.97	66.84	NG	68.11	67.43	66.49	66.95
ECS-3						De	stroyed				
GZ-1	99.19	67.96	67.66	67.35	66.97	66.81	68.34	68.06	67.41	66.49	66.93
GZ-2	97.14	68.00	67.72	67.39	66.98	66.85	NG	68.09	67.44	66.50	NG
GZ-3	99.34	67.98	NG	NG	NG	NG	67.49	NG	67.39	NG	NG
MW-1	98.53	68.02	67.74	67.35	NG	66.89	NG	NG	NG	NG	NG
MW-2	98.57	68.05	67.77	67.45	NG	66.91	NG	NG	67.47	NG	NG
MW-3	98.01	68.06	67.77	67.42	NG	66.90	NG	NG	67.45	NG	NG
MW-4	98.99	68.04	67.75	67.44	67.04	66.90	68.39	68.11	67.44	66.56	67.03
MW-5	95.28	68.49	68.18	67.88	NG	67.28	NG	NG	67.94	NG	NG
MW-6	97.25	68.00	67.71	67.39	NG	66.84	NG	NG	67.44	NG	NG
MW-7	96.89	67.97	67.69	67.34	NG	66.83	NG	NG	67.39	NG	NG
MW-8	99.31	67.98	67.69	67.36	NG	66.83	NG	NG	67.39	NG	NG
MW-9	98.60	68.02	67.71	67.40	67.00	66.88	69.36	68.12	67.45	66.54	66.99
MW-10	99.90	67.95	67.66	67.33	NG	67.80	NG	NG	67.37	NG	NG
MW-11	100.53	67.95	67.65	68.32	NG	66.81	NG	NG	67.37	NG	NG
MW-12	100.18	NG	67.74	67.40	NG	66.90	NG	NG	67.43	NG	NG

SAGE ENVIRONMENTAL

Equivalent Head Elevations Over Time January through November 2007

Monitor Well	MP Elevations	2/28/07	5/11/07	8/10/07	11/7/07
ECS-1		\	WELL CLOSE	ED	
ECS-2	97.69	67.03	69.66	67.38	66.14
ECS-3		V	WELL CLOSE	ED	
GZ-1	99.19	66.99	68.59	67.38	66.10
GZ-2		\	WELL CLOSE	ED	
GZ-3	99.34	66.99	68.59	67.36	66.14
MW-I		\	WELL CLOSE	ED	
MW-2		V	WELL CLOSE	ED	
MW-3		\	WELL CLOSE	ED	
MW-4	98.99	67.04	68.64	67.44	66.20
MW-5		\	WELL CLOSE	ED	
MW-6	97.25	NG	68.63	67.41	66.16
MW-7		\	WELL CLOSE	ED	
MW-8		١	WELL CLOSE	ED	
MW-9	98.90	67.09	68.60	67.4	66.19
MW-10		\	WELL CLOSE	ED	
MW-11		\	WELL CLOSE	ED	
MW-12		\	WELL CLOSE	ED	

Equivalent Head Elevations Over Time February 2008

Monitor Well	MP Elevations	2/8/08
ECS-1	96.29	WELL CLOSED
ECS-2	97.69	66.71
ECS-3		Destroyed
GZ-1	99.19	NG
GZ-2	97.14	WELL CLOSED
GZ-3	99.34	66.73
MW-1	98.53	WELL CLOSED
MW-2	98.57	WELL CLOSED
MW-3	98.01	WELL CLOSED
MW-4	98.99	66.80
MW-5	95.28	WELL CLOSED
MW-6	97.25	66.74
MW-7	96.89	WELL CLOSED
MW-8	99.31	WELL CLOSED
MW-9	98.60	66.79
MW-10	99.90	WELL CLOSED
MW-11	100.53	WELL CLOSED
MW-12	100.18	WELL CLOSED

SAGE ENVIRONMENTAL

Separate Phase Petroleum Thickness March through December 1999

Monitor Well	2/11/99	3/5/99	4/9/99	5/17/99	6/9/99	7/7/99	8/12/99	9/24/99	10/27/99	11/8/99	11/17/99	12/20/99
ECS-1	0.15	0.25	<.01	NP	NG	NP	0.23	0.01	NP	NP	NG	NP
ECS-2	0.45	0.37	0.11	0.68	0.60	0.61	0.47	0.01	NP	NP	NG	0.38
ECS-3	NP	0.01	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
GZ-1	NP	NP	NG	NP	NP	NP	0.01	0.06	NG	NG	0.04	0.01
GZ-2	0.01	<.01	NP	NP	NP	NP	0.03	0.06	NG	0.05	NG	0.06
GZ-3	NP	<.01	<.01	NP	NP	NP	0.01	0.08	NG	NG	NG	0.01
MW-1	NP	<.01	<.01	NP	NP	NP	0.49	0.25	3.45	0.12	NG	0.39
MW-2	NP	<.01	NP	NP	NP	NP	0.01	NP	NP	NP	NG	NP
MW-3	NP	NP	NP	NP	NP	NP	0.02	0.02	NP	NP	NG	NP
MW-4	NP	<.01	<.01	NP	NP	NP	0.23	0.63	0.54	NG	0.36	0.55
MW-5	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-6	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-7	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-8	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP
MW-9	NI	NI	NI	NP	NP	NP	NP	NP	NP	NP	NG	NP

NP = No product

NG = Not gauged

NI = Not installed as of date gauged (Monitor wells MW-5 through MW-9 and vent well VW-1 were installed on April 28 and 29, 1999.)

Separate Phase Petroleum Thickness January through December 2000

Monitor Well	1/19/00	2/17/00	3/21/00	4/26/00	5/30/00	6/27/00	7/24/00	8/9/00	9/14/00	10/23/00	11/15/00	12/26/00
ECS-1	NP	0.01	NP	NP	0.01	NG	NP	< 0.01	NG	< 0.01	NP	NP
ECS-2	NP	0.02	NP	NP	NP	NP	NP	0.06	< 0.01	< 0.01	0.04	0.60
ECS-3	DRY	DRY	NP	DRY	DRY	NP	DRY	DRY	DRY	DRY	DRY	DRY
GZ-1	0.02	0.10	NP	NP	NP	NP	NP	NP	NP	NP	< 0.01	NP
GZ-2	NP	NP	NP	NP	0.02	0.60*						
GZ-3	NP	0.02	NP	NP	NP	NP	NP	NP	NP	NP	0.30	0.10*
MW-1	0.03	0.10	< 0.01	NG	NG	NP	NG	NG	NP	0.38	NP	< 0.01
MW-2	NP	NP	NP	NP	NP	NP						
MW-3	NP	NP	NP	NP	NP	NP						
MW-4	0.61	0.32	NP	NP	NP	NP	NP	< 0.01	NP	0.04	0.34	0.04
MW-5	NP	NP	NP	NP	NP	NP						
MW-6	NP	NP	NP	NP	NP	NP						
MW-7	NP	NP	NP	NP	NP	NP						
MW-8	NP	NP	NP	NP	NP	NP	NP :	NP	NP	NP	NP	NP
MW-9	NP	NP	NP	NP	NP	NP						

NP = No product NG = Not gauged

(*) = Product thickness estimated with a bailer

Separate Phase Petroleum Thickness January 2001 through December 2001

Monitor Well	1/24/01	2/28/01	3/27/01	4/19/01	5/2/01	6/8/01	7/17/01	8/16/01	8/30/01	9/26/01	10/26/01	11/28/01	12/31/01
ECS-1	NP	0.01	NP	< 0.01	< 0.01	< 0.01	< 0.01	NA	0.02	NP	NP	< 0.01	NP
ECS-2	NP	0.01	NP	NP	< 0.01	NP	NP	NP	NG	NP	NP	< 0.01	< 0.01
ECS-3	NP	NP	NP	NP	NP	NP				Destroy	ed		
GZ-1	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
GZ-2	NP	0.01	NP	< 0.01	NP	< 0.01	NA	NP	NG	NP	NP	NP	NP
GZ-3	0.25	0.01	NP	NP	NP	NP	NG	NA	NP	NP	NP	NP	NP
MW-1	NP	0.01	NP	NP	NP	NP	NP	NP	NG	NP	NP	< 0.01	NP
MW-2	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-3	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	0.04	NP
MW-5	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-6	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-7	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-8	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NG	NP	NP	NP	NP

Separate Phase Petroleum Thickness January 2002 through December 2002

Monitor Well	1/30/02	2/13/02	3/14/02	4/5/02*	4/18/02	4/25/02*	5/21/02	6/21/02	7/23/02	8/9/02	9/20/02	10/17/02	11/14/02	12/13/02
ECS-1	NP	0.43'	<0.01'	<0.01'	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-2	0.01'	0.01'	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3				Des	troyed									
GZ-1	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
GZ-2	0.01'	0.52'	<0.01'	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-3	NP	NP	0.01'	NG	NP	NG	0.01'	<0.01'	NP	NP	NP	NP	NP	NP
MW-1	NP	<0.01'	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-2	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-3	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-4	0.01'	1.36'	0.84'	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP ,	NP	NP	NP
MW-6	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-7	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-8	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP
MW-9	NP	NP	NP	NG	NP	NG	NP	NP	NP	NP	NP	NP	NP	NP

NP = No Product

NG = Not gauged

* Indicates a limited gauging event due to the presence of SPP in these wells.

SAGE ENVIRONMENTAL

Separate Phase Petroleum Thickness January 2003 through December 2003

Monitor Well	1/14/03	2/6/03	3/24/03	4/16/03	5/9/03	6/12/03	7/11/03	8/27/03	9/26/03	10/21/03	11/5/03	12/9/03
ECS-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3				•		Destro	yed					
GZ-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NG	NG
MW-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-6	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-7	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-8	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-10	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-11	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-12	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP

Separate Phase Petroleum Thickness January through December 2004

Monitor Well	1/13/04	2/16/04	3/24/04	4/12/04	5/19/04	6/30/04	7/21/04	8/25/04	9/17/04	10/6/04	11/17/04	12/24/04
ECS-1	NP	NP	NG	NP	NP							
ECS-2	NG	NG	NP	NP								
ECS-3						De	stroyed					
GZ-1	NP	NP										
GZ-2	NP	NP										
GZ-3	NP	NP										
MW-1	NP	NP										
MW-2	NP	NP										
MW-3	NP	NP										
MW-4	NP	NP										
MW-5	NP	NP										
MW-6	NP	NP										
MW-7	NP	NP										
MW-8	NP	NP										
MW-9	NP	NP										
MW-10	NP	NP										
MW-11	NP	NP										
MW-12	NP	NP										

Separate Phase Petroleum Thickness January through December 2005

Monitor Well	1/11/05	2/1/05	3/18/05	4/22/05	5/13/05	6/17/05	7/15/05	8/29/05	9/16/05	10/31/05	11/28/05	12/21/05
ECS-1	NP	NG	NP	NP	NG	NP	NP	NG	NG	NG	NG	NP
ECS-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3						Dest	royed					
GZ-1	NP	NG	NP	NP	NG	NP	NG	NG	NG	NG	NG	NG
GZ-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-3	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-6	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-7	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-8	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-10	NP	NG	NP	NP	NG	NP	NP	NG	NG	NG	NG	NP
MW-11	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-12	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP

Separate Phase Petroleum Thickness January through December 2006

Monitor Well	1/27/06	2/20/06	3/31/06	4/21/06	5/8/06	6/23/06	7/28/06	8/18/06	10/19/06	11/9/06
ECS-1	NG	NG	NP	NP	NP	NP	NP	NP	NP	NG
ECS-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
ECS-3	Destroyed									
GZ-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
GZ-2	NP	NP	NP	NP	NP	NP	NP	NP	NP	NG
GZ-3	NP	NP	NG	NG	NG	NG	NG	NP	NG	NP
MW-1	NP	NP	NP	NP	NP	NP	NG	NG	NG	NG
MW-2	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-3	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-4	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-5	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-6	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-7	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-8	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-9	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
MW-10	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-11	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG
MW-12	NP	NP	NP	NP	NP	NP	NG	NP	NG	NG

Separate Phase Petroleum Thickness January through September 2007

Monitor Well	2/28/07	5/11/07	8/10/07	11/7/07
ECS-1	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
ECS-2	NP	NP	NP	NP
ECS-3	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
GZ-1	NP	NP	NP	NP
GZ-2	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
GZ-3	NP	NP	NP	NP
MW-1	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-2	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-3	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-4	NP	NP	NP	NP
MW-5	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-6	NP	NP	NP	NP
MW-7	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-8	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-9	NP	NP	NP	NP
MW-10	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-11	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED
MW-12	WELL CLOSED	WELL CLOSED	WELL CLOSED	WELL CLOSED

NP = No Product

Separate Phase Petroleum Thickness February 2008

Monitor Well	2/8/08
ECS-1	WELL CLOSED
ECS-2	NP
ECS-3	WELL CLOSED
GZ-1	NG
GZ-2	WELL CLOSED
GZ-3	NP
MW-1	WELL CLOSED
MW-2	WELL CLOSED
MW-3	WELL CLOSED
MW-4	NP
MW-5	WELL CLOSED
MW-6	NP
MW-7	WELL CLOSED
MW-8	WELL CLOSED
MW-9	NP
MW-10	WELL CLOSED
MW-11	WELL CLOSED
MW-12	WELL CLOSED

NP = No Product NG = Not gauged

	-	ı	
	1	,	
	٩	١	
	J	ŗ	
	-		

Historical Groundwater Analytical Results – BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date		2000	19088	NGS/IS	853-65E		0.000		200	NE SE	Nation	100000	3000		31.00A	300	manage.	Conce	ntration	0.000			S49) No.	STORES	NO POSITION	100000000000000000000000000000000000000						100000	00.43			734 6V2	RIDEM Method	DIDENCE
	PARKS OF	Longino	1	1 2020															W-1		9507-000	STORY CO.			Shene:								October 1933 to				1 Objective	RIDEM GB Groundwater
Analyte		8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeat	le Aromatic	ics by EPA	8021B (ug/l):	10,25170		Contract to			manual local		(Photosty)	1500000	200 413	100			TO DEPOSIT		Sec. 30.10	12/19/23/20			No. of Concession, Name of Street, or other Designation, Name of Street, Name	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NAME OF TAXABLE PARTY.	(1222) III			SALES AND		S. Carlon				HERE STATE	Groundwater	000
Benzene	11000 ^b	SPP	SPP	SPP	NS	2700 ^b	870 ^b	SPP	1600 ^b	3200 ^h	SPP	1300 ^b	2000 ^h	890 ^b	<350 ^d	5.2	3.7	23	NS	120	NS-SFR	NS-SFR	8.1	NS-SFR	8	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	2800 ^b					1700 ^b	420		2400 ^b	<3000°		<1200	1200	1600 ^b	1200	64	12	7.2		56			47		8.1		<1		8.7								1600	16000
MTBE	400000 ^b					23000 ^b	8800 ^b		16000 ^b	150000 ^b		66000 ^b	47000°	17000 ^b	3900	8.9	7.2	490		50			5.3		<1		<1		2.2								5000	NE
Toluene	26000 ^{hu}					6500 ^b	4700 ^b		9700 ^b	16000 ^b		3200 ^b	8600 ^b	6500 ^b	2700 ^b	97	29	13		110			10		2.3		<1		<1								1700	21000
Total Xylenes	15000					11000	3800		22000	18000		15000	94(0)	11000	12000	450	230	110		360			320		54		<1		56								NE.	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

- <x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);</p>
 NE: No allowable limit is established for the substance
- NS Not Sampled
- NS-SFR: Not Sampled, Sampling Frequency Reduced

SPP: Separate phase petroleum present

Sample Results.

- b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

- d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u. Analyte concentration in this sample exceeds the RIDEM UCT.

 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date	2002		Bales			A DESCRIPTION	0.00	STATE OF THE PARTY.				NAME OF STREET		6500000			2012	Concer	stration	2000 B						2007203	MIRASON.			- Na 10 100		(4) San					RIDEM Method	DIDEM CR
KI SECTION	19,950	100 Page							THE REAL PROPERTY.		SP HATTEN			Y2194 19	PATE LOS	1		M	N-2		100 323	34,50019)					3000	24000		100000		10/10/20		955537960			1 Objective	Coundwater
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/93	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeab	le Aromatic	es by EPA	8021B (ug/l			SERVICE		050000	To realize	A COLOR		MANUSCO AND	20551202	and bloom	101121 ES			Date of the		1231111	10000		DESCRIPTION OF THE PERSON OF T		ES NUMBER		SECOND.		Real Page	AND DESCRIPTION	SELECTION IN		1200000	HEALTH TO	90132931		Groundwater	CCL
Benzene	6200 ^h	SPP	2200 ^b	2500 ^b	1100 ^h	690 ^b	2200 ^b	360 ^h	890 ^b	180 ^b	210 ^b	<20	. <3	<5()	<2	<25	<5	<15	<8	<1	NS-SFR	NS-SFR	<3	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	2100 ^b		1200	1100	440	320	2500 ^b	2900 ^b	670	800	2900 ^b	1,300	120	2200 ^h	140	1400	330	1500	560	180			320		110		4.3		45								1600	16000
MTBE	22000 ^h		630	1800	470	24	<200	290	61	<50	<200	<20	5.5	<50	4.5	<25	5.5	<15	<n< td=""><td><1</td><td></td><td></td><td>5</td><td></td><td><1</td><td></td><td>1.2</td><td></td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5000</td><td>NE</td></n<>	<1			5		<1		1.2		1.5								5000	NE
Toluene	13000 ^b		4200 ^b	6300 ^b	1700 ^b	340	13000 ^b	5900 ^b	1900 ^b	3000 ^b	9200 ^b	540	26	3600 ^b	59	2200 ^b	200	710	140	21			49		<1		<1		<1								1700	21000
Total Xylenes	7800		3800	4400	1900	570	8300	9700	2700	2600	11000	2000	97	72(0)	_170	5300	770	5000	2380	4()()			710		48		.36		12								NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method <x. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);
NE: No allowable limit is established for the substance

- NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results:

- b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives.

 d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives.
- Analyse concentration in this sample exceeds the RIDEM UCC.
 Although the analyse was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration I Limit.
- * Analysis via EPA Method 8260B

Historical Groundwater Analytical Results - BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date	Company of the last of the las		ZO SE		VIII DE LO	TANDEST.					MAININE	MINISTER OF	02020	estella.	100 pp (4) (5)			Concer	ntration	550 (197)				Control of	BLAUS		235 W	and the same	(E) 2- (S))	A 41 12		2000	S-Marie Co			25 m A 4 A	RIDEM Method	BIDENCH
FRICE SPECIE	(SEC. 10)	No. of the latest		Salar Contract	1002-12	YEGA A	13000000	5032555			Series	A STORY				170 621 64		M	W-3			ensile s			PATRICE S	9150,30	de la lace		A STATE OF THE PARTY OF THE PAR		3000	\$1.00 K (b)	G175 V174	SE EL LA	50 500	NEW PARK	1 Objective	Crowndwater
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeab	le Aromatic	cs by EPA 8	021B (ug/l):	A PARTY IS	SALES CONTRACTOR		Acceptable.	DOM: NO	Name of the last		Steville le	0.074114	(2) (9) (5) (1)	SESTEM !	all control	0.7000000	Principals)	30000	20100000	4/10/14	10000 1200	-(rifetally	NOT COME	a distant	082/01				SE 18 (17 A) 10	1579611-50	0.77	Total Par		5000	ela mis		Groundwater	DCL
Benzene	1700 ^b	SPP	1900 ^b	1300 b	270 ^b	53	120	39	3.5	13	<10	<1()	< 1()	<[1)	<10	<10	<2	1.5	<3	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	2400 ^b		3000 b	2300°	920	170	410	450	820	200	330	3(8)	260	88	89	80	44	50	3	18			<1		21		24		20								1600	16000
MTBE	< 7.50		390	1.3.3	<50	<5()	<20	<20	<50	5.5	<10	11	<10	< (()	<10	<10	2.9	2.8	<3	1.6			<1		<1		1.7		1.1								,5(XX)	NE
Toluene	11000 ^b		12000 b	8200 h	3700 ^b	880	1400	670	3300 ^h	200	530	110	3()()	150	120	110	20	11	<3	3.6			<1		<1		<1		<1								1700	21000
Total Xylenes	12600		17000	97(8)	45(0)	980	2000	1,500	4700	720	1700	1000	17(x)	660	680	1000	260	3(X)	262	240			7.1		150		160		120								NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled. Sampling Frequency Reduced

SPP: Separate phase petroleum present

- Sample Results.

 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u: Analyte concentration in this sample exceeds the RIDEM UCL.

 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

 * Analysis via EPA Method 8260B

Sample/Date										E15923	1959 C. 141				GRADE ST	DE DE LOS	19/2019	Concer	ntration	100000				KERSEN.		00000		March Co.			ALC: U.S.		596140	STATE OF THE PARTY.			RIDEM Method	nmessen
	1000000	03511077	1000		10000	North Co					0733103			经基础	A CHES		STATE OF THE PARTY.	M	W-4	200 mass		Charles II									BIREKE	REAL PROPERTY.		Control of the Control		10.00	1 Objective	Coundwater
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeabl	le Aromatic	es by EPA 1	8021B (ug/l):	1010020			79502.31G		-0.04803		AL DEAD		91,000	September 1	allow to	20100000		15000749	Here was		100000	STEP STORY	Sh\qtasin	1000	Service San	3 (0)35.0	000000000000000000000000000000000000000	Name of the	MANUFACT.	Street Company				Mary process	(E)/4(79)	Groundwater	CCE
Benzene	<200000°	SPP	NS	SPP	12000 ^b	SPP	SPP	16000 ^b	11000 ^b	10000 _p	SPP	SPP	<15000	<15000 d	<15000 ^d	3800 ^b	2600 ^h	NS	3100 ^h	2600 ^b	2200°	1500 ^b	960 ^b	1200 ^b	120	200 ^b	120	160 ^b	22	31	82	130	27	9.1	64	46	140	18000
Ethylbenzene	<2(1000)				2300 ^b			8900 ^b	5100 ^b	<10000°			<15(NN) ^d	<1.5()()() ^d	<15000 ^d	2900 ^b	<2000 d		2400 ^b	2400 ^b	1800 ^b	1600	1600	1000	120	520	94	310	190	100	270	430	210	160	600	790	1600	16000
MTBE	550000°				940000°			820000 b	310000 ^h	560000°			720000°	650000 ^b	680000°	220000°	130000 ^b		170000°	48000°	42000 ^b	36000 ^b	10000 ^b	11000°	550	330	41	30	16	21	35	50	<1	16	77	47	5000	NE.
Toluene	26000 ^{hu}				26000 ^{bq}			41000 ^{loc}	37000 ^{hu}	42000 ^{lm}			41000 ^{bq}	29000 ^{bs}	33000 ^{bu}	16000 ^b	13000 ^b		20000°	14000 ^b	5000 ^b	3800 ^b	4200 ^h	1700	260	1000	170	220	86	33	180	290	140	1,30	700	410	17(0)	21000
Total Xylenes	<200000				16000			29000	23000	24000			6(XXX)	20000	<15(RR)	21000	13000		17600	16000	12000	12000	11000	6200	97()	4100	720	1000	1100	590	960	1500	540	880	32(8)	3400	NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x).

NE: No allowable limit is established for the substance.

NS; Not Sampled NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results:

- b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives.

 d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives.

 u. Analyte concentration in this sample exceeds the RIDEM UCL.

 y. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

 * Analysis via EPA Method 8260B

Historical Groundwater Analytical Results – BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date	SERVICE STATE		3500000	SON TANADA		THE STREET		MARKET THE				ly leading	Garagnesi			10000	10-25 BI	Concer	ntration			TO SERVICE		Ell/age/s	2006/96	Washington.	POWERS.	200 nAir	75 6 A (4)	11 15 CO 11 15	NAME OF THE PERSON	SHIP PER SHIP	aristma by	CENTER OF STREET		CONTRACTOR	RIDEM Method	DIDEM CD
222 September 1	15,555,500					0035020			in the second	Catholine 3	200	62025045	246.86.24					M	W-5	are const		200 PM 1949		MERCHAN	District of		100000	A CHECKING	La Cesta VI	10 (11 11 11 11 11	SPECIAL	ALC: US		200		Section 5	1 Objective	Conventor
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/96	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeab	le Aromatic	s by EPA 8	021B (ug/l)		Sections		CARGO COM	POSITION	11/0/30	A PORTO		VIII 2000	No.	SCHOOL SECTION	DESCRIPTION OF THE PERSON OF T				2010/2012	-460C-103	to les librar	372310				119 150 150		Supplies.	In which he	10401909	-701072	893193	100 - 25	MANAGEMENT	KIND IN	2001100	Groundwater	OC.
Benzene	< 5	<0.5	<0.5	<1).5	<1),5	<0.5	<0.5	<0.5	<(),5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	[8(XX)
Ethylhenzene	<5	<0.5	<1),5	<11.5	<0.5	<0.5	<0.5	<0.5	<1).5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1								1600	16000
MTBE	<5	12	<1	1.3	<1	<1	1	<1.0	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1								5(XX)	NE
Toluene	<5	<0.5	<0.5	<1).5	<0.5	<0.5	<0.5	<11.5	<03.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1								1700	21000
Total Xylenes	<5	<1).5	<1).5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	4.7	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1								NE.	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled. Sampling Frequency Reduced

SPP: Separate phase petroleum present

Sample Results

- SPP: Separate phase petroleum present

 Sample Results.

 b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

 d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives

 u. Analyte concentration in this sample exceeds the RIDEM UCT.

 v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

 * Analysis via EPA Method 8260B

Sample/Date			GREEKS.	E4192.50						Service Services	50/5				9166		18 19 19	- COMICS	ntration	May V					39/33%				24(4)	V 12-1725			10150				RIDEM Method	RIDEM GB
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03		W-6 11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	\$/11/07	8/10/07	11/7/07	2/8/08	1 Objective GB	Groundwater UCL
Volatiles, Purgeab	le Aromatic	ics by EPA 8	8021B (ug/l)	1							H 10 (5.4%)				TO THE REAL PROPERTY.	NO.	0,000,000			15000	THE STATE OF								Hill to		12000				DATE OF THE PARTY		Groundwater	Section 1
Benzene	6.2	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<	<1	<1	<1	<1	NS-SFR	NS-SFR	<2	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	<1	<1	NS-SFR	NS-SFR	140	180xx)
Ethylbenzene	<5	1.5	11	<11.5	<0.5	<11.5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<2		<1		<1		<1				<	<1			1600	16000
MTBE	<5	8.6	<1	2.4	3.9	4	3.3	5.7	1.3	12	4	4.7	<1	<1	<1	1.7	4.9	1.7	1.6	1.2			210		<1		<1		<1				<1	<1			5(XX)	NE.
Toluene	<5	6.8	20	<0.5	<1).5	<0.5	<0.5	<0.5	<1).5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<2		<1		<1		<1				<1	<1			1700	21000
Total Xylenes	<5	21	62	<11.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<	<1	<1	<1	<1			<2		<1		<		<				2	2			NE.	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

x. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x).

NE. No allowable limit is established for the substance

NS. Not Sampled.

NS-SPR. Not Sampled. Sampling Frequency Reduced

SPP. Separate phase petroleum present

Sample Results.

- SPP: Separate phase personeum present

 Sample Results.

 b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives:
 d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u. Analyte concentration in this sample exceeds the RIDEM UCT.

 Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

 * Analysis via EPA Method 8260B

Historical Groundwater Analytical Results - BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date						2.60	Was long			1950 (1961)		NESSET.					C (41%)	Conce	ntration						0111950					200		1 19 2 10 10			ESTREM	94416	RIDEM Method	
	100000		Section 2		21-178-62			260 116					50000		19.0000	LOCAL DE	Name of the	M	W-7	THE PARTY		51119EU						No. of Land			1000	and the said	STATE OF	TO NOTE:		A COLUMN	1 Objective	GODEM GB
Analyte	5/17/99	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeabl	le Aromatic	s by EPA 8	021B (ug/l):	Direction of the last	Length 10		13(3)	diam's						20,122,333		10.535		2423000	100000	N9484049	CHARAG	Manager,	0.25500							1000000		MINISTER STREET	10 miles			120000	Groundwater	oca,
Benzene	59	140 ^b	7.3	56	17	11	2.8	<0,5	0.68	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	d	<0.5	<11.5	<0.5	<11.5	<0.5	<0.5	<1).5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1								1600	16000
MTBE	<5	<1	<1	<1	11	3.2	<1	1	- 11	1.6	<	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1								5(99)	NE
Toluene	<5	<0.5	<1).5	<0.5	<0.5	<1).5	<0.5	<0.5	<0.5	<1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1						\Box		1700	21000
Total Xylenes	<5	<0.5	<1).5	<11.5	<0.5	<1).5	<0.5	<0.5	<0.5	<1.0	5	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<								NE.	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

«x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance.

NS: Not Sampled NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results:

- Sample Results:
 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u: Analyte concentration in this sample exceeds the RIDEM UCL.
 y: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date		00.0844	201115163				West State	Carlotte		100000			20,000		EXCIS	AMERICA		Concer	ntration	100000			VISIO I				run	72 15 15 25	100000		-	10000		OPER S			RIDEM Method	nmru cn
		7.4	Grison)	5.0273	USAN PARKET				Harana A			WARD CO.				MADE STORY	All Street	M	W-8		And Complete			HEATH BOOK					450700		P. L. D.					100000	1 Objective	Convention of
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/97	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeable	Aromatics	by EPA 80	21B (ug/l):					NAME OF		CONTRACTOR OF THE PERSON OF TH	SANDER OF					No.	53341111111		TOTAL COM	NAME OF		ALL ROAD		Part series	ATTACK TO			(All lines)		RESIDEN					650/AB	1000000	Groundwater	ccc
Benzene	7500 ^b	10000°	13000 ^b	8800 ^b	12000 ^h	5600 ^h	5500 ^b	3100 ^b	2400 ^b	1400 ^h	2000 ^h	1200 ^b	320 ^b	100	67	8.2	6.6	5.5	36	23	NS-SFR	NS-SFR	20	NS-SFR	1.3	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	2500 ^h	<2500 d	<2500°	1800 ^b	2700 ^b	1500	1500	1900 ^b	1500	1500	1300	890	380	88	1.3().	16	27	18	15	14			25		20		<1		7.1								1600	16000
MTBE:	440000°	780000 ^b	560000 ^b	240000 ^b	410000°	85000 ^b	33000 ^b	7100 ^h	37(X)	36000 ^b	44000°	19000 ^b	7500 ^b	2600	14()()	52	22	53	680	620			12		6		<1		1.4								5000	NE
Toluene	10000 ^b	12000 ^b	13000 ^b	14000 ^b	17000 ^b	12000 ^b	10000°	14000 ⁵	6700 ^h	6100 ^b	3200 ^b	2000 ^h	<1.5()	<50	<5()	<1	2.8	<1	6	5.4			<1		<1		<1		<1								1700	21000
Total Xylenes	10000	75(X)	<2500	6900	86(X)	5800	4800	SOLK)	54(0)	6600	4700	2600	1300	480	1200	43	38	3.6	6.3	26			17		2.3		<1		4.3								NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x).</p>
NE: No allowable limit is established for the substance.
NS: Not Sampled. Sampled. Sampling Frequency Reduced.
SPP. Separate phase petroleum present.
Sample Results.

- Samele Results.

 b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u: Analyte concentration in this sample exceeds the RIDEM UCL.
 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
 * Analysis via EPA Method 8260B.

Historical Groundwater Analytical Results – BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date					Maria Bar	113 mas (1)	West.	PART OF THE			Made	MATERIAL STATES					STATE OF THE PARTY OF	Conce	ntration	de consultant				9 (12 je)						1/2015	0/200000		un mit				RIDEM Method	RIDEM GR
	0.50					0200		Charles								45000		M	W-9		50000	SEASTING.		PHIS ST		30.50		250	10 E 15	ic in a	1000					11000	1 Objective	Groundwater
Analyte	5/17/99	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	Groundwater	UCL
Volatiles, Purgeal	ble Aromatic	es by EPA 80	021B (ug/l)		9153645			5/55925	B-23.90			G-12/12		(25/23)25	77 S 200		STATE OF THE PARTY						Sylvania (Desty Epis		\$ 100 pm		25 193 193			Side	Walter of	SHOW	SAM		
Benzene	<2500 ^d	<250 ^d	<25	1.5	4.8	<5()	120	610 ^b	1700 ^b	2500 ^b	5000 ^b	5000 ^b	8000 _p	9400 ^b	11000 ^h	<[{ X X ^d	8300 ^b	8000 ^h	4000°	4200 ^h	4600 ^b	2800 ^b	1800°	280 ^b	450°	1500 ^b	430 ^b	660 ^b	370 ^h	360 ^b	210 ^b	360 ^h	140	61	7.3	93	140	18000
Ethylbenzene	<2.5(N) ^d	<250	<25	<0.5	<0.5	<50	< 1(1()	<100	< }()()()	<2(KK) ^d	<5000	<5(NN) ^d	<5()()() ^d	< 5(N X) ^d	<.5()()() ^d	< [()()()() ^d	<2000 d	<4000°d	<2000 d	<2000 d	<2000°	<800	<400	<100	220	600	<40	190	45	58	<15	150	7.3	- 11	62	14	1600	16000
MTBE	120000°	96000 ^b	6100 ^b	1000	9300 ^b	3300	13000 ^b	850000 ^b	140000°	210000 ^b	250000 ^b	160000 ^b	300000 ^b	520000 ^b	520000 ^b	590000 ^b	620000°	570000°	250000°	280000 ^h	230000 ^b	110000°	53000 ^h	11000°	16000°	48000°	4600	14000°	4000	5800°	1600	3400	780	100	20	42	5000	NE
Toluene	<2500 ⁴	<250	<25	<0.5	<0.5	<5()	<1(0)	220	<]((())	<2000 ^d	<5000	< 5(KK) ^d	<5(XX) ^d	<50001	< 5(1)(1)()	<10000°	<2000 d	<4000°	<2000 d	<2000 d	<2000°	<800	<400	<100	<120	<500	<4()	< ()()	<25	<.9(1	<15	<25	2.9	<1	6	1.1	17(X)	21000
Total Xylenes	<2500	<250	<2.5	<0.5	<0.5	<5()	< }()()	230	< 1000	<2(0.0)	<5(XX)	<5000	<5(1(1))	<5()()()	<5(KK)	< [(((()))	<2(88)	<4000	<2000	<2000	<2000	<8(x)	<4(X)	<100	160	<5(10)	<4()	33()	<25	110	<15	2,3()	31	9.4	74	4	NE.	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<i. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance.

- NS-SFR. Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

- Sample Results:

 b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u: Analyte concentration in this sample exceeds the RIDEM UCT.
 v. Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit.

Sample/Date	100000000000000000000000000000000000000						SCHOOLS ATMINISTRA					SANCE OF SANCE	MONGO CO					Concer						SANTE SANTE		AND DESCRIPTION OF THE PERSON			100						SANSON SANSON	PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL PR	RIDEM Method 1 Objective	RIDEM GB
Analyte Volatiles, Purgeabl	5/17/99 le Aromatics	The same of the sa	11/9/99 121B (ug/l):	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB Groundwater	UCL.
Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	17	<5	2.2	<150 ^d	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	1										1 1		<5	<5	<	<150	<1	<1	<1	<			<1		<1		<1		<1								1600	16000
MTBE	1		. 1							1	1 1		3(x)	260	79	8700°	58	82	130	26			7.1		2.4		7		9.4								5000	NE
Toluene	1										1 1		<.5	<5	<1	<150	<1	<1	<1	<1			<1		<1		<1		<1								1700	21000
Total Xylenes													<5	<5	<1	<150	<1	<1	<1	<1			<1		<1		<1		<1								NE.	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method. <x.: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

- NS: Not Sampled
- NS-SFR. Not Sampled. Sampling Frequency Reduced SPP: Separate phase petroleum present
- Sample Results:

- b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u. Analyte concentration in this sample exceeds the RIDEM UCL.
 y: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Historical Groundwater Analytical Results - BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date	2000	CONTRACT.				The same	150000				212115		120730		RESERVE OF THE		0.55555	Concer					ROE GAS			TO SERVICE AND IN			teal s	E STATE	ar yellow						RIDEM Method	RIDEM GB
Analyte				2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	3723		2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/96	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	Groundwater
Volatiles, Purgeable A	romatics by	y EPA 8021	B (ug/l):		STEEL STORY	1000		Man Name	15 PO (16)	The state of the		210 779		PS (3.94)	373-759					B DITTE		100 30		67.7	14015	2000		MEDITOR B	2-3-0-3		10000		Se Story Se	EN DESIGN		le villand	Groundwater	THE RESIDENCE OF
Benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<1	<1	<1	<1	<1	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	1		1					1	1	1 1			<1	<1	<1	<1	<1	<1	<	<1			<1		<1		<1		<1								1600	16000
MTBE								1		1 1			<1	<1	<1	<1	<1	1.6	1.5	<1			8.8		5.5		2		1.6								5000	NE.
Toluene]							1		1 1		1	1.5	<1	<1	<1	<1	<	<1	<1			<1		<1		<		<1								1700	21000
Total Xylenes													<1	<1	<1	<1	<1	<1	<1	<1			<1		<		<		<1								NE	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

CE. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

STP: Acquate passes periodician present
Sample Results:
b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives:
d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
u. Analyte concentration in this sample exceeds the RIDEM UCL.
v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date	-				en mes		100.050		75 (NO.05)			Serber .	(Autoria			et sale	SUE DE	Conce	THE REAL PROPERTY.						1000	2000	desa					Ottown	12000				RIDEM Method	RIDEM GB
Analyte Volatiles, Purpeable A		8/12/99 v EPA 8021		2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/92	11/14/02	2/13/03	5/9/03		N-12 11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/19/07	11/7/07	2/8/08	GB Groundwater	Groundwater UCL
Benzene	NS	NS	NS	NS	NS.	NS	NS	NS	NS	NS	NS	NS	<	<1	<1	<1	<	<1	<1	<1	NS-SFR	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene]												<1	<	<1	<	<1	<1	<1	<1			<1		<1		<1		<1								1600	16000
MTBE.	1												<	<1	1.1	<1	2.4	12	19	20			4		2		1.8		1.5								5(NN)	NE
Toluene	1												<1	<1	<	<	<1	<1	<	<			<1		<		<1		<								1700	21(00)
Total Xylenes													<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1		<1								NE	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<:--<--<tr>
<---<td><:--<td>Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x):

NE:
No allowable limit is established for the substance

NS:
Not Sampled

NS-SFR:
Not Sampled, Sampling Frequency Reduced

SPP:
Separate phase petroleum present

Sample Results:

b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives:

Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 Analyte concentration in this sample exceeds the RIDEM UCI.
 Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit.

Historical Groundwater Analytical Results – BTEX and MTBE. S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date	RESIDENCE OF THE PERSON		1079/31	1000	ERIZOS.	OF STREET	5-5-6-63		M NAME OF		Si Si Singi	VIII STEEL	2013/2012					Conce	ntration			2500		19/19/20			2000			100,000		12/18/12	OCTOBER 1				RIDEM Method	DIDENCE
	011000	STILL SHA		113.094		ACTION IN		15 May 177				1673 B 21	the House	ROSE SERVICE					S-1										No. of Contract of	27035017			A STATE OF		100000	20月七年	1 Objective	Croundwater
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/30/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06 -	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeable	Aromatics	by EPA 80	21B (ug/l):	3311255	1.02223			Selection of the least			NAME OF TAXABLE PARTY.	ALC: NO	2012000		ARRIES .	THE REAL PROPERTY.		1020000	ARREST CO.	ELS INC.	STREET, ST		glass side	100000000000000000000000000000000000000	100000	15000000		DE CONTRACT	and the last	CONTRACTOR OF STREET		CONTRACT					Groundwater	CCL
Benzene	<2500 ^d	SPP	2000 ^b	SPP	SPP	SPP	<2500 ^d	SPP	SPP	SPP	SPP	SPP	<300 ^d	< f(11)q	<3()() ^d	<20	<1	<1	<1	<1	NS-SFR	NS-SFR	<5	NS-SFR	<1	NS-SFR	<1	NS-SFR	<1	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	NS-SFR	140	18000
Ethylbenzene	8200 ^b		5400 ^h				4000 ^b						2800 ^h	2500 ^b	660	49	<1	1	4.3	9.6			.52		<1		<1		<1								1600	16000
MTBE	<2500		<5()()				6700 ^h						<300	<3()()	< 3()()	<20	<1	<1	<1	1.1			<5		<1		<1		<1								5000	NE
Toluene	49000 ^{bu}		44000 ^{lm}				28000 ^{bu}						12000 ^b	8700°	1000	3.3	<1	1.6	5.7	11			47		<1		<1		<1								1700	21000
Total Xylenes	52000		36(00)				26(HH)						39000	34000	16000	1700	22	99	229	280			1400		<1		<1		<1								NE.	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x. Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE; No allowable limit is established for the substance.

NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results.

- b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

- d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u: Analyte concentration in this sample exceeds the RIDEM UCL.
 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit

Sample/Date													NEO PLES						entration CS-2				Resilient														RIDEM Method 1 Objective	RIDEM GB
Analyte Volatiles, Purgeable	5/17/99 Aromatics	8/12/99 by EPA 80	11/9/99 21B (ug/l):	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB Groundwater	Groundwater UCL
Benzene	SPP	SPP	SPP	SPP	3000 ^b	SPP	SPP	SPP	SPP	4500 ^b	SPP	SPP	680 ^b	260 ^b	180 ^b	350 ^b	160 ^b	79	450°	NS	380 ^b	1100 ^b	510 ^b	900 ^b	20	200 ^h	110	13	69	5	180 ^b	61	1.4	<20	49	28	140	18000
Ethylbenzene					3900 ^h					3000 ^b			1000	720	620	240	80	320	430		250	710	490	190	140	760	270	180	620	140	950	720	39	360	990	580	1600	16000
MTBE:					9000 ^b					1400			1500	170	<100	620	2500	.58	280		130	160	<40	28	<4	<20	<10	<.5	<10	<5	<15	24	<1	<20	<20	22	5000	NE
Toluene					34000 ^{bq}					24000 ^{lm}			3800 ^h	1300	770	600	880	440	980		1600	6400 ^b	4400 ^b	1500	4.50	2300 ^b	870	550	1600	340	1900 ^b	1900 ^b	74	680	2500 ^b	1200	1700	21000
Total Xylenes					23000					20000			11000	6.5(0)	5600	1600	920	3800	2900		2500	65(X)	5000	2700	980	5400	2,3(00)	1300	4100	980	6100	59(0)	330	2800	7400	4600	NE.	NE

SPP: Separate phase petroleum present

- Sample Results;
 b. Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
- Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 Analyte concentration in this sample exceeds the RIDEM UCI.
 Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit.

Historical Groundwater Analytical Results - BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

Sample/Date	100000		A PARIS OF	Maria de la compansión de	S2 656	17.65	0.0100			125-5,793	1000000			No. Hero		Manage S	Control of the last	Concer	ntration			160000	and E. C.	ERRE			10150102	09/28/35			15.917.015	SEAL AND 15			AL LOS HOLES		RIDEM Method	
ACCESS OF	-	2000		THE REAL PROPERTY.	392333	100000000000000000000000000000000000000				F 150.39		C PR (250)	Section 1		16/25/19 (24	Stay (1985)			Z-1		22 (mar)			12000			STORES!			and the same	GEORGE STE	(COLDERS)		STATE OF THE STATE		ALC: SALE	1 Objective	RIDEM GB
Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner	5/17/99*	decrees the same	_		5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/30/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	Groundwater
Volatiles, Purgea		_	The Real Property lies, the Person lies,	Spinister Street, or other Designation of the last of	-			A Ship	10000				2012	Service Contract			The Real		15 TEL 16 / 14		definition and	CUS SHIP!						包括图数			TA I SANTE	0.0000	SUMBER		Distriction of	STATE OF THE PARTY.	Groundwater	
Benzene	<100000	<25000°	NS	SPP	32000 ^{hu}	<0.5	SPP	23000 ^{bu}	14000 ^b	13000 ^b	18000 ^{bu}	16000 ^b	9000 ^b	6900 ^h	8500 ^b	2500 ^h	2400 ^b	1900 ^b	2100 ^b	2400 ^h	1500 ^b	1800 ^b	2100 ^h	NS	NS	1800 ^b	1400 ^b	930 ^b	1400 ^b	1000 ^b	1100 ^b	1600 ^h	490 ^b	1500 ^b	1400 ^b	NS	140	18000
Ethylbenzene	<100000°	<25000			5700 ^b	< 0.5		7100 ^b	4300 ^b	<8000 ^d	<8000 ^d	<10000 ^d	<3000 ^d	<3000 ^d	3300 ^b	1000	1200	1300	1800 ^b	2200 ^b	1700 ^b	2600 ^b	3900 ^b			3900 ^b	3300 ^b	1700 ^b	4000 ^b	2000 ^b	2700 ^b	3600 ^b	2200 ^h	3200 ^h	4100 ^b		1600	16000
MTBE	2600000 ^b	3700000	•		2500000 ^b	29		600000 _p	370000 ^b	560000 ^h	670000 ^b	460000 ^b	150000 ^b	150000 ^b	160000 ^b	33000 ^b	16000 ^b	9600 ^b	12000 ^b	9000 ^b	2200	2400	4400			<250	<150	<75	<150	<150	<150	<150	<1	<160	<160		5000	NE
Toluene	<100000 ^d	60000 ^{bq}			62000 ^{bu}	0.74		50000 ^{bu}	22000 ^{hu}	38000 ^{hu}	45000 ^{bu}	45000 ^{bu}	30000 ^{bu}	27000 ^{bu}	46000 ^{bu}	11000 ^b	8300 ^b	9800 ^b	14000 ^b	19000 ^b	9700 ^b	16000 ^b	39000 ^{hu}			32000 ^{bu}	20000 ^b	10000 ^b	22000 ^{bo}	15000 ^{bu}	20000 ^b	25000 ^{bu}	8000 ^h	22000 ^{lu}	21000 ^b		1700	21000
Total Xylenes	< [100000)	55000			28000	<0.5		32000	16000	12000	12000	11000	14000	14000	23000	6200	6200	6,3(10)	9000	12000	7400	12000	22000			23000	19000	10000	22(00)	13000	18000	24000	12000	22000	29000		NE	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled NS-SFR: Not Sampled. Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results:

b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

- d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
- u. Analyte concentration in this sample exceeds the RIDEM UCI.
- Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
 Analysis via EPA Method 8260B

Sample/Date	100000				Cotto			(SEE SEE	ADRESS.	1000000		2000			1999/8	07323G73	all should	Concer	ntration		505500	1000000	91015	diam'r.	2000	C 200 C 200	100 Carlo	17, 75 3	1009200	200	12000000				0.000	-	RIDEM Method	
	0.000					122 11040		Carrier Bar	NI CONTRACT	STREET, ST	STREET, STREET	2011/2019	No. of Contract of	Relicing S		5-9-503H			72				2000000	Maria de la compansión de		ASS CONTRACTOR	A DECKE				E STREET	Waren.	是 图 图 图 图		POR LOCAL		1 Objective	RIDEM GB
Analyte	5/17/99*	8/12/99	11/9/99	2/17/00	5/30/00	8/9/00	11/15/00	2/28/01	5/2/01	8/16/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeal	ole Aromatic	es by EPA	8021B (ug/t)):	Carlotten,	- C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2555 6-5	1000000			TO THE REAL PROPERTY.	A STATE OF	BAQUE IN	STATE OF THE PARTY OF	Hoge tes	Carried St.	ALC: NO.	No real factors	S. 19-24 (1) (4)	20000000	39(2)(3)(3)(2)		DATE OF THE PARTY		52/20100	100 550 0	010000	NO. STATE OF	Sel her	200000		STATE OF THE PARTY	STATE OF THE PARTY OF	THE REAL PROPERTY.		Groundwater	UCL
Benzene	20000 ^{ha}	SPP	SPP	4000 b	5200 ^b	11000 ^b	SPP	SPP	1600 ^h	2600 ^b	NS	SPP	<400 ^d	730 ^b	25	68	<4()	<20	<30	<25	<25	<10	<8	<10	<3	<40	<10	<5	<20	<10	NS	NS	NS	NS	NS	NS	140	18000
Ethylbenzene	3200 ^h			1700 b	1300	2300 ^b			1800 ^h	2200 ^b			1100	1300	310	170	450	210	330	120	96	120	4.3	25	5.2	<40	27	5	<20	<10							1600	16000
MTBE	<1200			10000 b	2300	<800			410	<400			<400	<400	30	<35	<40	<20	<3()	<25	<25	<10	<8	<10	<3	<40	<10	<5	<20	<10							5000	NE.
Toluene	40000 ^{bu}			19000 b	20000b	36000 ^{hu}			16000 ^b	26000 ^{bu}			5700 ^b	13000 ^b	380	1900 ^b	2300 ^b	560	920	230	140	230	140	97	29	160	69	18	53	<10							1700	21000
Total Xylenes	20000			15000	17000	21000			23000	27000			29000	16000	3800	4200	6400	5400	93()()	6400	3700	3300	2200	2100	600	9100	35(8)	1600	5900	22(X)							NE:	NE

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method.

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);</p>
NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced SPP: Separate phase petroleum present

Sample Results:

- b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;

- d. Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives u. Analyte concentration in this sample exceeds the RIDEM UCL.

 v: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
- * Analysis via EPA Method 8260B

Historical Groundwater Analytical Results – BTEX and MTBE S&H Sunoco R016 905 Cranston Street Cranston, Rhode Island

																											_											
Sample/Date	1000000		1962 377	0.00	1000			NO PERSON	2010/06/06/05		B 9 17	N - 757-00			September 1		2000 C 20	Conce	ntration			4000					100 × 60 × 60		Shirt In.	The spirit		25000	15 (504)27		ALC: RESERVE	STATE OF THE PARTY.	RIDEM Method	DIDENCOR
5 6 6 7 9 2 - 3	1555335	Line of		10000		SCHOOL SEC	G0(47.5)	166(51)	A CONTRACTOR OF THE PARTY OF TH	CAPACIDITY IS	ANGESTICS:			ARTHURSON	ALC: NO.			G	Z-3	NAME OF STREET	RESTRICTED IN		Interpolation	PATICATION		STATE STATE	20000000	Maria Maria	0000000		0.0020000	F-100		20000	0000000	480000000	1 Objective	RIDEM GB
Analyte	5/17/99*	8/12/99	11/9/99	2/17/0	0 5/30/	0 8/9/00	11/15/00	2/28/01	5/2/01	8/30/01	11/28/01	2/13/02	5/21/02	8/9/02	11/14/02	2/13/03	5/9/03	8/27/03	11/5/03	2/16/04	5/19/04	8/25/04	11/17/04	2/1/05	5/13/05	8/29/05	11/28/05	2/20/06	5/8/06	8/18/06	11/9/06	2/28/07	5/11/07	8/10/07	11/7/07	2/8/08	GB	UCL
Volatiles, Purgeable	e Aromatic	s by EPA 8	021B (ug/l)):	SALES OF		Maria Compa		THE REAL PROPERTY.				danser					NECTOR			III ROSE	1000 A 6125		1000000		CONTROL OF	1950 EC	12000	STATE OF THE PARTY		95 200 20		BERTHER PARTY		12020000	ALCOHOLD !	Groundwater	CCL
Benzene	<50000 ^b	SPP	SPP	SPP	29000	le NS	SPP	SPP	6200 ^b	12000 ^b	13000 ^h	9200 ^b	SPP	5700 ^h	1800 ^b	790 ^h	590 ^b	1600 ^b	1800 ^b	1300 ^b	1200 ^b	1100 ^b	1200 ^h	670 ^b	490 ^b	750 ^b	660 ^b	580 ^b	NS	660 ^b	1100°	880 ^b	630 ^h	850 ^b	580 ^b	190°	140	18000
Ethylbenzene	<5()()()() ^d				5200				2500 ^b	<.5()()() ^d	<5()()() ^d	<8000°		3000 ^b	1500	580	510	2000 ^b	2200 ^b	2400 ^b	2600 ^b	2200 ^b	2600 ^b	2900 ^b	2600 ^b	2200 ^b	3100 ^b	2800 ^h		2400 ^h	3300 ^b	2700 ^b	2500 ^b	2500 ^b	2100 ^b	1600	1600	16000
MTBE	1400000 ^b	1			19000	0 _p			220000 ^b	510000 ^h	420000 ^b	560000 ^b		160000°	24000 ^b	3000	4400	8400 ^b	20000b	12000 ^b	3900	1200	330	<100	<7.5	<100	<100	<100		<1(x)	<100	< (X)	<1	<100	<100	<100	5000	NE.
Toluene	<500000°				62000	ha .			22000 ^{bu}	33000 ^{bu}	45000 ^{hu}	40000 ^{lm}		26000 ^{bu}	9000 ^b	1700 ^b	1400	11000 ^b	14000°	14000 ^b	15000 ^b	13000 ^b	16000 ^b	14000 ^h	10000 ^b	11000 _p	17000 ^b	9900 ^b		8200 ^b	11000 ^b	9000 ^b	6200 ^b	7800 ^b	6300 ^b	3800 ^b	1700	21000
Total Xylenes	<50000				3300)			17(KK)	15000	21000	30000		25(11)	11000	3,5()()	2400	9900	13500	15000	15000	1,4000	17000	18000	16000	17000	20000	19000		18000	24(10)	21000	14000	20000	19000	14000	NE.	NE.

Where necessary, the RIDEM objectives, in ppm, have been converted to ppb to match the laboratory reporting method,
<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x);

NE: No allowable limit is established for the substance

NS: Not Sampled

NS-SFR: Not Sampled, Sampling Frequency Reduced

SPP: Separate phase petroleum present

Sample Results:

- Sample Results;
 b: Analyte concentration in this sample exceeds RIDEM GB Groundwater Objectives;
 d: Although the analyte was not detected, the laboratory quantitation limit for this sample exceeds RIDEM GB Groundwater Objectives
 u: Analyte concentration in this sample exceeds the RIDEM UCT.
 s: Although the analyte was not detected, the laboratory quantitation limit for the sample exceeds the RIDEM Upper Concentration Limit
 *Analysis via EPA Method 8260B